Ferdowsi University of Mashhad

Document Type : Research Articles


1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

2 Pharmacognosi Department, Pharmacology School, Medical Science University of Mashhad, Mashhad, Iran

3 Biotechnology and plant breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

4 Chemistry Department, Science school, Gonbad university, Gonbad, Iran


Endophytic fungi are often producing host plant metabolites. Tanshinones are secondary metabolites of the Salvia genus which are also produced by some endophytic fungi. Efficient secondary metabolite production in endophytic fungi drops significantly after sequential subcultures. 5-azacytidine (5-AC) is an analog of the naturally occurring pyrimidine nucleoside cytidine and a DNA methyltransferase inhibitor. In this relation, 5-AC is an effective tool to induce the expression of silenced secondary metabolite genes in fungi. We isolated 4 endophytic fungi from the roots of Salvia abrotanoides which produced tanshinone. Cryptotanshinone and tanshinone IIA were produced by Penicillium canescens, Penicillium nodositatum, and Penicillium pinophilum, while Paraphoma radicina only produced tanshinone IIA. The maximum amount of tanshinones was extracted from P. pinophilum culture with 130.826 mg cryptotanshinone /g of dry weight and 50.155 mg Tanshinone IIA/g of dry weight. These amounts were significantly more than tanshinones produced in plant roots (0.55 mg cryptotanshinone/g of dry weight, 1.3 mg Tanshinone IIA/g of dry weight). In the third subculture, tanshinone production decreased significantly. 5-azacytidine as an epigenetic modifier retrieved tanshinone production in the third subculture of P. pinophilum. Also, 5- azacytidine treatment made a big jump in Tanshinone IIA production in P. radicina (63.176 mg TIIA/g of dry weight) besides increasing Tanshinone IIA production in P. nodositatum cultures. This is the first report using 5- azacytidine to improve tanshinone production in endophytic fungi. Our results confirm that 5- azacytidine is an efficient, easy, and quick chemical to felicitate secondary metabolite production in endophytic fungi.


Beikmohammadi M. (2012) The evaluation of medicinal properties of Perovskia abrotanoides Karel. Middle-East J Sci Res 11:189-193.
Bohnert M., Wackler B. and Hoffmeister D. (2010) Spotlights on advances in mycotoxin research. Applied Microbiology and Biotechnology 87:1-7.
Chang Y. N., Zhu C., Jiang J., Zhang H., Zhu J. K. and Duan C. G. (2020) Epigenetic regulation in plant abiotic stress responses. Journal of integrative plant biology 62:563-580.
Chen H.-J., Awakawa T., Sun J.-Y., Wakimoto T. and Abe I. (2013) Epigenetic modifier-induced biosynthesis of novel fusaric acid derivatives in endophytic fungi from Datura stramonium L. Natural products and bioprospecting 3:20-23.
Esmaeili S., Naghibi F., Mosaddegh M., Sahranavard S., Ghafari S. and Abdullah N. R. (2009) Screening of antiplasmodial properties among some traditionally used Iranian plants. Journal of Ethnopharmacology 121:400-404.
González-Menéndez V., Crespo G., Toro C., Martín J., de Pedro N., Tormo J. R. and Genilloud O. (2019) Extending the metabolite diversity of the endophyte Dimorphosporicola tragani. Metabolites 9:197.
Griffiths E. A. and Gore S. D. 2008. DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes. In Seminars in hematology. Vol. 45. Elsevier. 23-30.
Henrikson J. C., Hoover A. R., Joyner P. M. and Cichewicz R. H. (2009) A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger. Organic & biomolecular chemistry 7:435-438.
Hosseinzadeh H. and Amel S. (2001) Antinociceptive effects of the aerial parts of Perovskia abrotanoides extracts in mice.
Jaafari M. R., Hooshmand S., Samiei A. and Hossainzadeh H. (2007) Evaluation of-leishmanicidal effect of Perovskia abrotanoides Karel. root extract by in vitro leishmanicidal assay using promastigotes of Leishmania major. Pharmacology online 1:299-303.
Keller N. P., Turner G. and Bennett J. W. (2005) Fungal secondary metabolism—from biochemistry to genomics. Nature Reviews Microbiology 3:937.
Kumar J., Sharma V. K., Singh D. K., Mishra A., Gond S. K., Verma S. K., Kumar A. and Kharwar R. N. (2016) Epigenetic activation of antibacterial property of an endophytic Streptomyces coelicolor strain AZRA 37 and identification of the induced protein using MALDI TOF MS/MS. PloS one 11:e0147876.
Lewis Z. A., Adhvaryu K. K., Honda S., Shiver A. L. and Selker E. U. (2010) Identification of DIM-7, a protein required to target the DIM-5 H3 methyltransferase to chromatin. Proceedings of the National Academy of Sciences 107:8310-8315.
Liu D.-Z., Liang B.-W., Li X.-F. and Liu Q. (2014) Induced production of new diterpenoids in the fungus Penicillium funiculosum. Natural Product Communications 9:1934578X1400900502.
Ma C., Jiang D. and Wei X. (2011) Mutation breeding of Emericella foeniculicola TR21 for improved production of tanshinone IIA. Process Biochemistry 46:2059-2063.
Moallem S. A. and Niapour M. (2008) Study of embryotoxicity of Perovskia abrotanoides, an adulterant in folk-medicine, during organogenesis in mice. Journal of Ethnopharmacology 117:108-114.
NASIRIASL M., Parvardeh S., Niapour M. and Hosseinzadeh H. (2002) Antinociceptive and anti-inflammatory effects of Perovskia abrotanoides aerial part extracts in mice and rats.
Qadri M., Nalli Y., Jain S. K., Chaubey A., Ali A., Strobel G. A., Vishwakarma R. A. and Riyaz-Ul-Hassan S. (2017) An insight into the secondary metabolism of Muscodor yucatanensis: small-molecule epigenetic modifiers induce expression of secondary metabolism-related genes and production of new metabolites in the endophyte. Microbial Ecology 73:954-965.
Rechinger K. (1982) Flora Iranica, No. 150 Labiatae. Akademische Druck-u, Verlagsanstalt, Graz:354-396.
Reyes-Dominguez Y., Boedi S., Sulyok M., Wiesenberger G., Stoppacher N., Krska R. and Strauss J. (2012) Heterochromatin influences the secondary metabolite profile in the plant pathogen Fusarium graminearum. Fungal Genetics and Biology 49:39-47.
Reyes‐Dominguez Y., Bok J. W., Berger H., Shwab E. K., Basheer A., Gallmetzer A., Scazzocchio C., Keller N. and Strauss J. (2010) Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Molecular microbiology 76:1376-1386.
Rountree M. and Selker E. (2010) DNA methylation and the formation of heterochromatin in Neurospora crassa. Heredity 105:38.
Sairafianpour M., Christensen J., Stærk D., Budnik B. A., Kharazmi A., Bagherzadeh K. and Jaroszewski J. W. (2001) Leishmanicidal, antiplasmodial, and cytotoxic activity of novel diterpenoid 1, 2-quinones from Perovskia abrotanoides: new source of tanshinones. Journal of natural products 64:1398-1403.
Smith K. M., Phatale P. A., Sullivan C. M., Pomraning K. R. and Freitag M. (2011) Heterochromatin is required for normal distribution of Neurospora crassa CenH3. Molecular and Cellular Biology 31:2528-2542.
Sun J., Awakawa T., Noguchi H. and Abe I. (2012) Induced production of mycotoxins in an endophytic fungus from the medicinal plant Datura stramonium L. Bioorganic & medicinal chemistry letters 22:6397-6400.
Teimoori-Boghsani Y., Ganjeali A., Cernava T., Müller H., Asili J. and Berg G. (2020) Endophytic fungi of native Salvia abrotanoides plants reveal high taxonomic diversity and unique profiles of secondary metabolites. Frontiers in microbiology 10:3013.
Vasanthakumari M., Jadhav S., Sachin N., Vinod G., Shweta S., Manjunatha B., Kumara P. M., Ravikanth G., Nataraja K. N. and Shaanker R. U. (2015) Restoration of camptothecine production in attenuated endophytic fungus on re-inoculation into host plant and treatment with DNA methyltransferase inhibitor. World Journal of Microbiology and Biotechnology 31:1629-1639.
Wang X., Sena Filho J. G., Hoover A. R., King J. B., Ellis T. K., Powell D. R. and Cichewicz R. H. (2010) Chemical epigenetics alters the secondary metabolite composition of guttate excreted by an atlantic-forest-soil-derived Penicillium citreonigrum. Journal of natural products 73:942-948.
Yang X.-L., Awakawa T., Wakimoto T. and Abe I. (2013) Induced biosyntheses of a novel butyrophenone and two aromatic polyketides in the plant pathogen Stagonospora nodorum. Natural products and bioprospecting 3:141-144.
Yu J.-H. and Keller N. (2005) Regulation of secondary metabolism in filamentous fungi. Annual Review of Phytopathology 43:437-458.
Zhou J., Xu Z., Sun H. and Zhang H. (2019) Smoke-isolated butenolide elicits tanshinone I production in endophytic fungus Trichoderma atroviride D16 from Salvia miltiorrhiza. South African Journal of Botany 124:1-4.