Ferdowsi University of Mashhad

Document Type : Research Articles

Author

1 Behbahan Faculty of Medical Sciences, Behbahan, Iran

2 Department of Biochemistry, Faculty of Biology of Tarbit Modarres University, Tehran, Iran

10.22067/jcmr.2025.89283.1097

Abstract

The HIV integrase enzyme, comprising its N-terminal (NTD), central (CD), and C-terminal (CTD) domains, plays a crucial role in the integration of the HIV genome into host DNA and in the viral life cycle. It accomplishes this by recognizing and binding viral DNA, maintaining structural integrity, and catalyzing integration into the host genome. The CTD domain contains the catalytic core, which includes the DDE motif, essential for cleavage and joining reactions, and interacts with LEDGF/p75 to enhance the specificity and efficiency of integration. Inhibitors that block integrase improve HIV treatment and reduce resistance. We utilized molecular docking methods to investigate the catalytic core of HIV integrase and its interactions with inhibitory ligands. The physicochemical properties and pharmacokinetics of the compounds under investigation were calculated using the SwissADME webtool database. Except for compounds with high molecular weight, the remaining compounds exhibit high gastrointestinal absorption, allowing for easy entry into the bloodstream. However, they often have low dermal absorption, which limits their effectiveness for dermal delivery. Compounds with CID numbers 74071, 24800940, and 133081875 demonstrate high dermal absorption. The compound with CID number 91899501 is the only exception, as the other compounds studied bind to a specific site composed of several amino acids. These amino acids, including Gln62, Leu63, Asp64, Val77, His114, Thr115, Asp116, Gly140, Ile141, and Glu152, are crucial for the effective binding of compounds to the enzyme. Understanding the binding sites of integrase strand transfer inhibitors (INSTIs) is crucial for assessing the efficacy of antiretroviral therapy against HIV. The active site of integrase contains the key amino acids D64, D116, and E152, which are targeted by most of the INSTIs studied. Our study aims to enhance the effectiveness of INSTIs and prevent the development of resistant viruses.
 

Keywords

Bar-Magen, T., Sloan, R. D., Donahue, D. A., Kuhl, B. D., Zabeida, A., Xu, H., ... & Wainberg, M. A. (2010). Identification of novel mutations responsible for resistance to MK-2048, a second-generation HIV-1 integrase inhibitor. Journal of Virology, 84(18), 9210-9216.‏
Bitencourt-Ferreira, G., & de Azevedo, W. F. (2019). Molegro virtual docker for docking. Docking screens for drug discovery, 149-167.‏
Chiu, T. K., & Davies, D. R. (2004). Structure and function of HIV-1 integrase. Current topics in medicinal chemistry, 4(9), 965-977.‏
Daina, A., & Zoete, V. (2016). A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 11(11), 1117-1121.‏
Daina, A., Michielin, O., & Zoete, V. (2014). iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. Journal of chemical information and modeling, 54(12), 3284-3301.‏
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1), 42717.‏
Delelis, O., Carayon, K., Saïb, A., Deprez, E., & Mouscadet, J. F. (2008). Integrase and integration: biochemical activities of HIV-1 integrase. Retrovirology, 5(1), 114.‏
Delelis, O., Thierry, S., Subra, F., Simon, F., Malet, I., Alloui, C., ... & Mouscadet, J. F. (2010). Impact of Y143 HIV-1 integrase mutations on resistance to raltegravir in vitro and in vivo. Antimicrobial agents and chemotherapy, 54(1), 491-501.‏
Eilers, G., Gupta, K., Allen, A., Zhou, J., Hwang, Y., Cory, M. B., ... & Van Duyne, G. (2020). Influence of the amino-terminal sequence on the structure and function of HIV integrase. Retrovirology, 17, 1-16.‏
Hicks, C., & Gulick, R. M. (2009). Raltegravir: the first HIV type 1 integrase inhibitor. Clinical Infectious Diseases, 48(7), 931-939.‏
Johnson, V. A., Brun-Vezinet, F., Clotet, B., & Van der Groen, G. (2013). Update of the drug-resistance mutations in HIV-1. Top Antivir Med, 21(3), 143-155.
K Narang, B., K Grewal, G., Roy, S., Bariwal, J., K Gupta, M., & K Rawal, R. (2014). A novel integrase targeting agent to explore the future prospective of HIV eradication: dolutegravir. Current HIV Research, 12(5), 325-338.‏
Kessl, J. J., McKee, C. J., Eidahl, J. O., Shkriabai, N., Katz, A., & Kvaratskhelia, M. (2009). HIV-1 integrase-DNA recognition mechanisms. Viruses, 1(3), 713-736.‏
Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., ... & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic acids research, 44(D1), D1202-D1213.‏
Korolev, S. P., Yu, A. Y., & Gottikh, M. B. (2011). Clinical use of inhibitors of HIV-1 integration: problems and prospects. Acta Naturae (англоязычная версия), 3(3 (10)), 12-28.‏
Lampiris, H. W. (2012). Elvitegravir: a once-daily, boosted, HIV-1 integrase inhibitor. Expert Review of Anti-infective Therapy, 10(1), 13-20.‏
Maertens, G. N., Engelman, A. N., & Cherepanov, P. (2022). Structure and function of retroviral integrase. Nature Reviews Microbiology, 20(1), 20-34.‏
Mbhele, N., Chimukangara, B., & Gordon, M. (2021). HIV-1 integrase strand transfer inhibitors: a review of current drugs, recent advances and drug resistance. International journal of antimicrobial agents, 57(5), 106343.‏
Neogi, U., Singh, K., Aralaguppe, S. G., Rogers, L. C., Njenda, D. T., Sarafianos, S. G., ... & Sönnerborg, A. (2018). Ex-vivo antiretroviral potency of newer integrase strand transfer inhibitors cabotegravir and bictegravir in HIV type 1 non-B subtypes. Aids, 32(4), 469-476.‏
Oliveira, M., Mesplede, T., Quashie, P. K., Moïsi, D., & Wainberg, M. A. (2014). Resistance mutations against dolutegravir in HIV integrase impair the emergence of resistance against reverse transcriptase inhibitors. Aids, 28(6), 813-819.‏
Osterholzer, D. A., & Goldman, M. (2014). Dolutegravir: a next-generation integrase inhibitor for treatment of HIV infection. Clinical Infectious Diseases, 59(2), 265-271.‏
Rhee, S. Y., Grant, P. M., Tzou, P. L., Barrow, G., Harrigan, P. R., Ioannidis, J. P., & Shafer, R. W. (2019). A systematic review of the genetic mechanisms of dolutegravir resistance. Journal of Antimicrobial Chemotherapy, 74(11), 3135-3149.‏‏
Rocchi, C., Gouet, P., Parissi, V., & Fiorini, F. (2022). The C-terminal domain of HIV-1 integrase: a Swiss Army Knife for the virus?. Viruses, 14(7), 1397.‏
Sala, M., Spensiero, A., Esposito, F., Scala, M. C., Vernieri, E., Bertamino, A., ... & Gomez-Monterrey, I. M. (2016). Development and identification of a novel anti-HIV-1 peptide derived by modification of the N-terminal domain of HIV-1 integrase. Frontiers in Microbiology, 7, 845.‏
Trivedi, J., Mahajan, D., Jaffe, R. J., Acharya, A., Mitra, D., & Byrareddy, S. N. (2020). Recent advances in the development of integrase inhibitors for HIV treatment. Current HIV/AIDS Reports, 17, 63-75.‏
Tsiang, M., Jones, G. S., Goldsmith, J., Mulato, A., Hansen, D., Kan, E., ... & Jin, H. (2016). Antiviral activity of bictegravir (GS-9883), a novel potent HIV-1 integrase strand transfer inhibitor with an improved resistance profile. Antimicrobial agents and chemotherapy, 60(12), 7086-7097.‏
Yousefi, R. (2024). Binding of curcumin near the GBT440 binding site at the alpha cleft in the sickle cell hemoglobin model [Pdb ID: 1NEJ]. Journal of Advanced Biomedical and Pharmaceutical Sciences, 7(2), 70-74.‏‏
Yousefi, R. (2024). Molecular docking study of rosmarinic acid and its analog compounds on sickle cell hemoglobin. Eurasian Journal of Science and Technology, 4(4), 303-330.‏‏
Yousefi, R. (2024). The Potential Application of Roselle Extracts (Hibiscus sabdariffa L.) in Managing Diabetes Mellitus. Journal of Advanced Pharmacy Research, 8(2), 38-48.‏‏
Zhang, Z., Lau, Y. H., & Arora, S. (2022). In Silico Studies of Compounds Present in Azadirachta Indica (Neem) and Their Ability to Bind Hiv Integrase Protein. Aresty Rutgers Undergraduate Research Journal, 1(4).‏‏
CAPTCHA Image