Aghayeva A., Yurtseven D. G., Akbulut N. H., Eyigor, O. (2024). Immunohistochemical determination of the excitatory and inhibitory axonal endings contacting NUCB2/nesfatin-1 neurons. Neuropeptides 103: 102401.
Agorastos A. and Chrousos G. P. (2022). The neuroendocrinology of stress: the stress-related continuum of chronic disease development. Molecular Psychiatry 27(1): 502-
Bahari N., Mahmoudi F., Haghighat K., Khazali H. (2023). The Effects of Trans-anethole on the Hypothalamic CGRP and CRH Gene Expression in a Rat Model of Stress. Archives of Advances in Biosciences 14(1): 1-7.
Bhattacharya S. K. and Muruganandam A. V. (2003). Adaptogenic activity of Withania somnifera: an experimental study using a rat model of chronic stress. Pharmacology Biochemistry and Behavior 75(3): 547-555.
Billert M., Rak A., Nowak K. W., Skrzypski M. (2020) Phoenixin: more than reproductive peptide. International journal of molecular sciences 21(21): 8378.
Bortolotto V.C., Araujo S.M., Pinheiro F.C., Poetini M.R., de Paula M.T., Meichtry L.B., et al. (2020). Modulation of glutamate levels and Na+, K+-ATPase activity contributes to the chrysin memory recovery in hypothyroid mice. Physiology & behavior 222: 112892.
Friedrich T. and Stengel A. (2021) Role of the novel peptide phoenixin in stress response and possible interactions with nesfatin-1. International journal of molecular sciences 22(17): 9156.
Grover H. M., Smith P. M., Ferguson A. V. (2020) Phoenixin influences the excitability of nucleus of the solitary tract neurones, effects which are modified by environmental and glucocorticoid stress. Journal of Neuroendocrinology 32(6): e12855.
Haghighat K.H., Mahmoudi F., Khazali H. (2024) A study of the central injection effects of chrysin on behavioural and intra-hypothalamic gene expression levels of CRH and CGRP in male rats [Preprint].
Kalamon N., Błaszczyk K., Szlaga A., Billert M., Skrzypski M., Pawlicki P., et al. (2020) Levels of the neuropeptide phoenixin-14 and its receptor GRP173 in the hypothalamus, ovary and periovarian adipose tissue in rat model of polycystic ovary syndrome. Biochemical and biophysical research communications 528(4): 628-635.
Keim S. R. and Shekhar A. (1996) The effects of GABAA receptor blockade in the dorsomedial hypothalamic nucleus on corticotrophin (ACTH) and corticosterone secretion in male rats. Brain research 739(1-2): 46-51.
Liang H., Zhao Q., Lv, S., Ji X. (2022) Regulation and physiological functions of phoenixin. Frontiers in Molecular Biosciences 9: 956500.
Mahmoudi F, Khazali H, Janahmadi M. Interactions of morphine and peptide 234 on mean plasma testosterone concentration. International Journal of Endocrinology and Metabolism. 2014; 12(1): e12554.
McIlwraith E. K., Zhang N., and Belsham D. D. (2022). The regulation of phoenixin: A fascinating multidimensional peptide. Journal of the Endocrine Society 6(2): bvab192.
Medina, J. H., Paladini, A. C., Wolfman, C., de Stein, M. L., Calvo, D., Diaz, L. E., & Peña, C. (1990). Chrysin (5, 7-di-OH-flavone), a naturally occurring ligand for benzodiazepine receptors, with anticonvulsant properties. Biochemical pharmacology, 40(10), 2227-2231.
Merali Z., Cayer C., Kent P., Anisman H. (2008). Nesfatin-1 increases anxiety-and fear-related behaviors in the rat. Psychopharmacology 201: 115-123.
Neghaddadgar L., Mahmoudi F., and Khazali, H. (2024) Effects of Dopamine and L-DOPA on Ghrelin Gene Expression in the Hypothalamus and Ovary in a Polycystic Ovarian Syndrome Rat Model. Scientific Journal of Kurdistan University of Medical Sciences 28(6): 1-11.
Pałasz A., Żarczyński P., Bogus K., Mordecka-Chamera K., Della Vecchia A., Skałbania, J., et al. (2021). Modulatory effect of olanzapine on SMIM20/phoenixin, NPQ/spexin, and NUCB2/nesfatin-1 gene expressions in the rat brainstem. Pharmacological Reports 73(4): 1188-1194.
Rayiti R.K., Munnangi S.R., Bandarupalli R., Chakka V., Nimmagadda S.L., Sk L.S., et al. (2020). Effect of chrysin on mechanical hyperalgesia in chronic constriction injury-induced neuropathic pain in the rat model. International Journal of Applied and Basic Medical Research 10(3): 189-193.
Schalla M. A., Goebel-Stengel M., Friedrich T., Kühne S. G., Kobelt P., Rose M., et al. (2020) Restraint stress affects circulating NUCB2/nesfatin-1 and phoenixin levels in male rats. Psychoneuroendocrinology 122: 104906.
Stompor-Gorący M., Bajek-Bil A., and Machaczka M. (2021). Chrysin: Perspectives on contemporary status and future possibilities as a pro-health agent. Nutrients 13(6): 2038.
Talebi M., Talebi M., Farkhondeh T., Kopustinskiene D.M., Simal-Gandara J., Bernatoniene J., et al. (2021) An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches. Biomedicine & Pharmacotherapy 141: 111906..
Tanida M., Gotoh H., Yamamoto N., Wang M., Kuda Y., Kurata Y., et al. (2015) Hypothalamic nesfatin-1 stimulates sympathetic nerve activity via hypothalamic ERK signaling. Diabetes 64(11): 3725-3736.
Yoshida N., Maejima Y., Sedbazar U., Ando A., Kurita H., Damdindorj B., et al. (2010) Stressor-responsive central nesfatin-1 activates corticotropin-releasing hormone, noradrenaline and serotonin neurons and evokes hypothalamic-pituitary-adrenal axis. Aging (Albany, NY) 2(11): 775.
Zhou J. J., Gao Y., Zhang X., Kosten, T. A., Li D. P. (2018). Enhanced hypothalamic NMDA receptor activity contributes to hyperactivity of HPA axis in chronic stress in male rats. Endocrinology 159(3),: 1537-1546.
Send comment about this article