Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., et al. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 1, 19-25.
Apweiler, R., Bairoch, A., & Wu, CT. (2007). The universal protein resource (UniProt). Nucleic Acids Research, 36 (1), D190-5.
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690.
Blanchard, H., Yu, X., Coulson, B. S., & von Itzstein, M. (2007). Insight into host cell carbohydrate-recognition by human and porcine rotavirus from crystal structures of the virion spike associated carbohydrate-binding domain (VP8*). Journal of Molecular Biology, 367(4), 1215–1226.
Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J., & Schwede, T. (2009). Protein structure homology modeling using SWISS-MODEL workspace. Nature Protocols, 4(1), 1–13.
Brito, B.G.A., & Cândido, L. (2020). Thermodynamic properties of cubic boron-nitride crystal by path integral Monte Carlo simulations. Chemical Physics Letters, 751, 137513.
Daneshmand, A., Kermanshahi, H., Sekhavati, M.H., Javadmanesh, A., Ahmadian, M., Alizadeh, M., et al. (2019). Effects of cLFchimera, a recombinant antimicrobial peptide, on intestinal morphology, microbiota, and gene expression of immune cells and tight junctions in broiler chickens challenged with C. perfringens. Scietific Reports, 10, 17704.
Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089 10092.
de Vries, S. J., van Dijk, M., & Bonvin, A. M. (2010). The HADDOCK web server for data-driven biomolecular docking. Nature Protocols, 5(5), 883–897.
Dormitzer, P. R., Sun, Z. Y. J., Wagner, G., & Harrison, S. C. (2002). The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. The EMBO Journal.
Dutta, S., Burkhardt, K., Swaminathan, G. J., Kosada, T., Henrick, K., Nakamura, H., et al. (2008). Data deposition and annotation at the worldwide protein data bank. Methods in Molecular Biology (Clifton, N.J.), 426, 81–101.
Ereifej, K.I., Alu'datt, M.H., Alkhalidy, H., Alli, I..., & Rababah, T.M. (2011). Comparison and characterisation of fat and protein composition for camel milk from eight Jordanian locations. Food Chemistry, 127, 282-289.
Fiore, L., Greenberg, H. B., & Mackow, E. R. (1991). The VP8 fragment of VP4 is the rhesus rotavirus hemagglutinin. Virology, 181(2), 553-563.
Graikini, D., Conesa, C., Abad, I., Pérez, M. D., & Sánchez, L. (2024). Evaluation of in vitro antirotaviral activity of lactoferrin from different species using a human intestinal model. International Dairy Journal, 149, 105818.
Homeyer, N., & Gohlke, H. (2012). Free Energy Calculations by the Molecular Mechanics Poisson-Boltzmann Surface Area Method. Molecular Informatics, 31(2), 114–122.
Hoque, S. A., Khandoker, N., Thongprachum, A., Khamrin, P., Takanashi, S., Okitsu, S., et al. (2020). Distribution of rotavirus genotypes in Japan from 2015 to 2018: Diversity in genotypes before and after introduction of rotavirus vaccines. Vaccine, 38(23), 3980-3986.
Hu, L., Crawford, S. E., Czako, R., Cortes-Penfield, N. W., Smith, D. F., Le Pendu, J., et al. (2012). Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature, 485(7397), 256-259.
Huang, J., & MacKerell, A. D., Jr (2013). CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145.
Hunter, H. N., Demcoe, A. R., Jenssen, H., Gutteberg, T. J., & Vogel, H. J. (2005). Human lactoferricin is partially folded in aqueous solution and is better stabilized in a membrane mimetic solvent. Antimicrobial Agents and Chemotherapy, 49(8), 3387–3395.
Isa, P., Arias, C. F., & López, S. (2006). Role of sialic acids in rotavirus infection. Glycoconjugate Journal, 23, 27-37.
Javadmanesh, A., & Azghandi, M. (2017). In silico evaluation of anti-retroviral effects of lactoferrin from different species. The Ninth International Congress on Biomedicine. Tehran, Iran.
Javadmanesh, A., & Azghandi, M. (2018). In silico study of anti-CCHFV effect of lactoferrin from different origin. The Third International and 15th National Genetics Congress. Tehran, Iran.
Javadmanesh, A., Mohammadi, E., Mousavi, Z., Azghandi, M., & Tanhaiean, A. (2021). Antibacterial effects assessment on some livestock pathogens, thermal stability and proposing a probable reason for different levels of activity of thanatin. Scientific Reports, 11(1), 10890.
Jiménez-García, B., Elez, K., Koukos, P. I., Bonvin, A. M., & Vangone, A. (2019). PRODIGY-crystal: a web-tool for classification of biological interfaces in protein complexes. Bioinformatics (Oxford, England), 35(22), 4821–4823.
Kapikian, A. Z., Hoshino, Y., Chanock, R. M., & Pérez-Schael, I. (1996). Efficacy of a quadrivalent rhesus rotavirus-based human rotavirus vaccine aimed at preventing severe rotavirus diarrhea in infants and young children. The Journal of Infectious Diseases, 174 Suppl 1, S65–S72.
Karthikeyan, S., Yadav, S., Paramasivam, M., Srinivasan, A., & Singh, T. P. (2000). Structure of buffalo lactoferrin at 3.3 A resolution at 277 K. Acta crystallographica. Section D, Biological Crystallography, 56(Pt 6), 684–689.
Khan, J. A., Kumar, P., Paramasivam, M., Yadav, R. S., Sahani, M. S., Sharma, S., et al. (2001). Camel lactoferrin, a transferrin-cum-lactoferrin: crystal structure of camel apolactoferrin at 2.6 A resolution and structural basis of its dual role. Journal of Molecular Biology, 309(3), 751–761.
Kitaoka, S., Konno, T., & De Clercq, E. (1986). Comparative efficacy of broad-spectrum antiviral agents as inhibitors of rotavirus replication in vitro. Antiviral Research, 6(1), 57–65.
Krzyzowska M, Janicka M, Tomaszewska E, Ranoszek-Soliwoda K, Celichowski G, Grobelny J, et al. (2022). Lactoferrin-Conjugated Nanoparticles as New Antivirals. Pharmaceutics, 14(9), 1862.
Kumar, P., Khan, J. A., Yadav, S., & Singh, T. P. (2002). Crystal structure of equine apolactoferrin at 303 K providing further evidence of closed conformations of N and C lobes. Acta crystallographica. Section D, Biological Crystallography, 58(Pt 2), 225–232.
Kumar, P., Yadav, S., & Singh, T. P. (2002). Crystallization and structure determination of goat lactoferrin at 4.0 A resolution: a new form of packing in lactoferrins with a high solvent content in crystals. Indian Journal of Biochemistry & Biophysics, 39(1), 16–21.
Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786.
Liu, Y., Huang, P., Tan, M., Liu, Y., Biesiada, J., Meller, J., et al. (2012). Rotavirus VP8*: phylogeny, host range, and interaction with histo-blood group antigens. Journal of Virology, 86(18), 9899-9910.
López, J. A., Maldonado, A. J., Gerder, M., Abanero, J., Murgich, J., Pujol, F. H., et al. (2005). Characterization of neuraminidase-resistant mutants derived from rotavirus porcine strain OSU. Journal of Virology, 79(16), 10369–10375.
Marrie, T. J., Lee, S. H., Faulkner, R. S., Ethier, J., & Young, C. H. (1982). Rotavirus infection in a geriatric population. Archives of Internal Medicine, 142(2), 313–316.
Moore, S. A., Anderson, B. F., Groom, C. R., Haridas, M., & Baker, E. N. (1997). Three-dimensional structure of diferric bovine lactoferrin at 2.8 A resolution. Journal of Molecular Biology, 274(2), 222–236.
Omotade, T. I., Babalola, T. E., Anyabolu, C. H., & Japhet, M. O. (2023). Rotavirus and bacterial diarrhoea among children in Ile-Ife, Nigeria: Burden, risk factors and seasonality. Plos One, 18(9), e0291123.
Rashidian, Z., Roshanak, S., Sekhavati, M. H. & Javadmanesh, A. (2023). Synergistic effects of nisin and CLF36 antimicrobial peptides in vitro. Veterinary Research & Biological Products, 36(3), 44-50.
Rennels, M. B., Glass, R. I., Dennehy, P. H., Bernstein, D. I., Pichichero, M. E., Zito, E. T., et al. (1996). Safety and efficacy of high-dose rhesus-human reassortant rotavirus vaccines--report of the National Multicenter Trial. United States Rotavirus Vaccine Efficacy Group. Pediatrics, 97(1), 7–13.
Roth, C. M., Neal, B. L., & Lenhoff, A. M. (1996). Van der Waals interactions involving proteins. Biophysical Journal, 70(2), 977-987.
Shahidi, F., Roshanak, S., Javadmanesh, A., Tabatabaei Yazdi, F., Pirkhezranian, Z., & Azghandi, M. (2020). Evaluation of antimicrobial properties of bovine lactoferrin against foodborne pathogenic microorganisms in planktonic and biofilm forms (in vitro). Journal of Consumer Protection and Food Safety, 15, 277–283.
Song, X., & Zhao, X. (2004). The van der Waals interaction between protein molecules in an electrolyte solution. The Journal of Chemical Physics, 120(4), 2005-2009.
Superti, F., Ammendolia, M. G., Valenti, P., & Seganti, L. (1997). Antirotaviral activity of milk proteins: lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT-29. Medical Microbiology and Immunology, 186, 83-91.
Superti, F., Siciliano, R., Rega, B., Giansanti, F., Valenti, P., & Antonini, G. (2001). Involvement of bovine lactoferrin metal saturation, sialic acid and protein fragments in the inhibition of rotavirus infection. Biochimica et Biophysica Acta (BBA)-General Subjects, 1528(2-3), 107-115.
Tahmoorespur, M., Azghandi, M., Javadmanesh, A., Meshkat, Z., & Sekhavati, M.H. (2020). A novel chimeric anti-HCV peptide derived from camel lactoferrin and molecular level insight on its interaction with E2. International Journal of Peptide Research and Therapeutics, 26, 1593–1605.
Tate, J. E., Burton, A. H., Boschi-Pinto, C., Parashar, U. D., World Health Organization–Coordinated Global Rotavirus Surveillance Network, Agocs, M., et al. (2016). Global, regional, and national estimates of rotavirus mortality in children< 5 years of age, 2000–2013. Clinical Infectious Diseases, 62(suppl_2), S96-S105.
van der Kraan, M. I., Nazmi, K., Teeken, A., Groenink, J., van 't Hof, W., Veerman, E. C., Bolscher, J. G., et al. (2005). Lactoferrampin, an antimicrobial peptide of bovine lactoferrin, exerts its candidacidal activity by a cluster of positively charged residues at the C-terminus in combination with a helix-facilitating N-terminal part. Biological Chemistry, 386(2), 137–142.
van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., et al. (2016). The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. Journal of Molecular Biology, 428(4), 720–725.
Send comment about this article