Ferdowsi University of Mashhad

Document Type : Review / Mini-Review

Authors

Department of Biology, Faculty of Sciences, Hakim Sabzevari University, Sabzevar, Iran

Abstract

Mitophagy occurs exclusively in the mitochondrial organ, itself considered one of the types of autophagy, and plays a very specific role in cellular functions and controlling tissue expansion. So, knowing this process as much as possible can help us understand many of the cell processes, especially the cell aging process, and the pathways that cause physiological diseases. In the process of mitophagy in the yeast Saccharomyces cerevisiae, three genes are directly involved, namely ATG 11, ATG  32, and ATG 8. This process has been researched for many years, but winning the 2016 Nobel Prize in Physiology for his discoveries of mechanisms for Autophagy by Yoshinori Ohsumi caused the world's attention to this cellular mechanism. In recent years, the Saccharomyces cell model has received a lot of attention in understanding the process of cell aging and chronic diseases such as type 2 diabetes, Parkinson's, Alzheimer's, and many types of cancer, and this article reviews the importance of the above genes and specifically examines the pathway in cervical Saccharomyces. The specific Autophagy of each organelle can help cure painful and chronic diseases such as type 2 diabetes, Parkinson's, Alzheimer's, and many types of cancer. They hope that by finding the mechanisms, Autophagy can make it more active or keep it active until the end of life, and in this way, it can cure these diseases or at least help cure a lot. This review article attempts to introduce and overview the role of key genes in the process.

Keywords

Aihara, M., Jin, X., Kurihara, Y., Yoshida, Y., Matsushima, Y., Oku, M., Hirota, Y., Saigusa, T., Aoki, Y., & Uchiumi, T. (2014). Tor and the Sin3–Rpd3 complex regulate expression of the mitophagy receptor protein Atg32 in yeast. Journal of cell science, 127(14), 3184-3196.
Aoki, Y., Kanki, T., Hirota, Y., Kurihara, Y., Saigusa, T., Uchiumi, T., & Kang, D. (2011). Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Molecular biology of the cell, 22(17), 3206-3217.
Araki, Y., Ku, W.-C., Akioka, M., May, A. I., Hayashi, Y., Arisaka, F., Ishihama, Y., & Ohsumi, Y. (2013). Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. Journal of Cell Biology, 203(2), 299-313.
Barve, G., & Manjithaya, R. (2021). Cross‐talk between autophagy and sporulation in Saccharomyces cerevisiae. Yeast, 38(7), 401-413.
Biorender.com, https://www.biorender.com
Camougrand, N., Vigié, P., Gonzalez, C., Manon, S., & Bhatia-Kiššová, I. (2020). The yeast mitophagy receptor Atg32 is ubiquitinated and degraded by the proteasome. PLoS One, 15(12), e0241576.
Csizmadia, T., & Juhász, G. (2020). Crinophagy mechanisms and its potential role in human health and disease. Progress in Molecular Biology and Translational Science, 172, 239-255.
Delorme-Axford, E., Guimaraes, R. S., Reggiori, F., & Klionsky, D. J. (2015). The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression. Methods, 75, 3-12.
Engel, S. R., Dietrich, F. S., Fisk, D. G., Binkley, G., Balakrishnan, R., Costanzo, M. C., Dwight, S. S., Hitz, B. C., Karra, K., & Nash, R. S. (2014). The reference genome sequence of Saccharomyces cerevisiae: then and now. G3: Genes, Genomes, Genetics, 4(3), 389-398.
Eskelinen, E.-L. (2008). New insights into the mechanisms of macroautophagy in mammalian cells. International review of cell and molecular biology, 266, 207-247.
Fang, D., Xie, H., Hu, T., Shan, H., & Li, M. (2021). Binding features and functions of ATG3. Frontiers in Cell and Developmental Biology, 9, 685625.
Farre, J.-C., Manjithaya, R., Mathewson, R. D., & Subramani, S. (2008). PpAtg30 tags peroxisomes for turnover by selective autophagy. Developmental cell, 14(3), 365-376.
Faruk, M. O., Ichimura, Y., & Komatsu, M. (2021). Selective autophagy. Cancer Sci, 112(10), 3972-3978. https://doi.org/10.1111/cas.15112
Feldmann, H. (2010). Horst Yeast. Molecular and Cell Bio, Wiley-Blackwell, Germany.
Feng, Y., He, D., Yao, Z., & Klionsky, D. J. (2014). The machinery of macroautophagy. Cell Research, 24(1), 24-41.
Galluzzi, L., Kroemer, G., & Bravo-San Pedro, J. M. (2017). Molecular Characterization of Autophagic Responses Part B. Academic Press.
Geng, J., & Klionsky, D. J. (2008). The Atg8 and Atg12 ubiquitin‐like conjugation systems in macroautophagy. EMBO reports, 9(9), 859-864.
He, C., Song, H., Yorimitsu, T., Monastyrska, I., Yen, W.-L., Legakis, J. E., & Klionsky, D. J. (2006). Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. The Journal of cell biology, 175(6), 925-935.
Hirata, E., Shirai, K., Kawaoka, T., Sato, K., Kodama, F., & Suzuki, K. (2021). Atg15 in Saccharomyces cerevisiae consists of two functionally distinct domains. Mol Biol Cell, 32(8), 645-663. https://doi.org/10.1091/mbc.E20-07-0500
Huang, Y. J., & Klionsky, D. J. (2021). Yeast mitophagy: Unanswered questions. Biochimica et Biophysica Acta (BBA)-General Subjects, 1865(8), 129932.
Innokentev, A., & Kanki, T. (2021). Mitophagy in yeast: Molecular mechanism and regulation. Cells, 10(12), 3569.
Kanki, T., Wang, K., Baba, M., Bartholomew, C. R., Lynch-Day, M. A., Du, Z., Geng, J., Mao, K., Yang, Z., & Yen, W.-L. (2009). A genomic screen for yeast mutants defective in selective mitochondria autophagy. Molecular biology of the cell, 20(22), 4730-4738.
Kanki, T., Wang, K., Cao, Y., Baba, M., & Klionsky, D. J. (2009). Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Developmental cell, 17(1), 98-109.
King, J. S. (2012). Autophagy across the eukaryotes: is S. cerevisiae the odd one out? Autophagy, 8(7), 1159-1162.
Kirisako, T., Baba, M., Ishihara, N., Miyazawa, K., Ohsumi, M., Yoshimori, T., Noda, T., & Ohsumi, Y. (1999). Formation process of autophagosome is traced with Apg8/Aut7p in yeast. The Journal of cell biology, 147(2), 435-446.
Kirisako, T., Ichimura, Y., Okada, H., Kabeya, Y., Mizushima, N., Yoshimori, T., Ohsumi, M., Takao, T., Noda, T., & Ohsumi, Y. (2000). The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. The Journal of cell biology, 151(2), 263-276.
Klionsky, D. J. (2012). Look people,“Atg” is an abbreviation for “autophagy-related.” That’s it. In (Vol. 8, pp. 1281-1282): Taylor & Francis.
Ko, T. K., & Tan, D. J. Y. (2023). Is Disrupted Mitophagy a Central Player to Parkinson’s Disease Pathology? Cureus, 15(2).
Kruckeber, A., & Dickinson, J. (2004). The metabolism and molecular physiology of Saccharomyces cerevisiae. Carbon Metabolism, 1st ed.; Dickinson, JR, Schweizer, M., Eds.
Leary, K. A., Hawkins, W. D., Andhare, D., Popelka, H., Klionsky, D. J., & Ragusa, M. J. (2022). Atg23 is a vesicle-tethering protein. Autophagy, 18(10), 2510-2511.
Lei, Y., Tang, D., Liao, G., Xu, L., Liu, S., Chen, Q., Li, C., Duan, J., Wang, K., & Wang, J. (2021). The crystal structure of Atg18 reveals a new binding site for Atg2 in Saccharomyces cerevisiae. Cellular and Molecular Life Sciences, 78, 2131-2143.
Liesa, M., Palacín, M., & Zorzano, A. (2009). Mitochondrial dynamics in mammalian health and disease. Physiological reviews, 89(3), 799-845.
Liu, D., Mari, M., Li, X., Reggiori, F., Ferro-Novick, S., & Novick, P. (2022). ER-phagy requires the assembly of actin at sites of contact between the cortical ER and endocytic pits. Proceedings of the National Academy of Sciences, 119(6), e2117554119.
Lynch-Day, M. A., & Klionsky, D. J. (2010). The Cvt pathway as a model for selective autophagy. FEBS letters, 584(7), 1359-1366.
Margolis, H. K., Katzenell, S., Leary, K. A., & Ragusa, M. J. (2020). The third coiled coil domain of Atg11 is required for shaping mitophagy initiation sites. Journal of molecular biology, 432(21), 5752-5764.
Martens, S., & Fracchiolla, D. (2020). Activation and targeting of ATG8 protein lipidation. Cell discovery, 6(1), 23.
Maruyama, T., & Noda, N. N. (2018). Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. The Journal of antibiotics, 71(1), 72-78.
Meijer, W. H., van der Klei, I. J., Veenhuis, M., & Kiel, J. A. (2007). ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy, 3(2), 106-116.
Miller-Fleming, L., Cheong, H., Antas, P., & Klionsky, D. J. (2014). Detection of Saccharomyces cerevisiae Atg13 by western blot. Autophagy, 10(3), 514-517. https://doi.org/10.4161/auto.27707
Mochida, K., Otani, T., Katsumata, Y., Kirisako, H., Kakuta, C., Kotani, T., & Nakatogawa, H. (2022). Atg39 links and deforms the outer and inner nuclear membranes in selective autophagy of the nucleus. Journal of Cell Biology, 221(2), e202103178.
Monastryska, I., Kiel, J. A., Krikken, A. M., Komduur, J. A., Veenhuis, M., & Klei, I. J. v. d. (2005). The Hansenula polymorpha ATG25 gene encodes a novel coiled-coil protein that is required for macropexophagy. Autophagy, 1(2), 92-100.
Motley, A. M., Nuttall, J. M., & Hettema, E. H. (2012). Pex3‐anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. The EMBO journal, 31(13), 2852-2868.
Nair, U., & Klionsky, D. J. (2005). Molecular mechanisms and regulation of specific and nonspecific autophagy pathways in yeast. Journal of Biological Chemistry, 280(51), 41785-41788.
Nazarko, V. Y., Nazarko, T. Y., Farré, J. C., Stasyk, O. V., Warnecke, D., Ulaszewski, S., Cregg, J. M., Sibirny, A. A., & Subramani, S. (2011). Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris. Autophagy, 7(4), 375-385. https://doi.org/10.4161/auto.7.4.14369
Noda, N. N., Fujioka, Y., Hanada, T., Ohsumi, Y., & Inagaki, F. (2013). Structure of the Atg12–Atg5 conjugate reveals a platform for stimulating Atg8–PE conjugation. EMBO reports, 14(2), 206-211.
Okamoto, K., Kondo-Okamoto, N., & Ohsumi, Y. (2009). Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Developmental cell, 17(1), 87-97.
Osawa, T., Kotani, T., Kawaoka, T., Hirata, E., Suzuki, K., Nakatogawa, H., Ohsumi, Y., & Noda, N. N. (2019). Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nature Structural & Molecular Biology, 26(4), 281-288.
Parrella, E., & Longo, V. D. (2008). The chronological life span of Saccharomyces cerevisiae to study mitochondrial dysfunction and disease. Methods, 46(4), 256-262.
Pfaffenwimmer, T., Reiter, W., Brach, T., Nogellova, V., Papinski, D., Schuschnig, M., Abert, C., Ammerer, G., Martens, S., & Kraft, C. (2014). Hrr25 kinase promotes selective autophagy by phosphorylating the cargo receptor Atg19. EMBO Rep, 15(8), 862-870. https://doi.org/10.15252/embr.201438932
Popelka, H., Damasio, A., Hinshaw, J. E., Klionsky, D. J., & Ragusa, M. J. (2017). Structure and function of yeast Atg20, a sorting nexin that facilitates autophagy induction. Proceedings of the National Academy of Sciences, 114(47), E10112-E10121.
Popelka, H., Reinhart, E. F., Metur, S. P., Leary, K. A., Ragusa, M. J., & Klionsky, D. J. (2021). Membrane binding and homodimerization of Atg16 via two distinct protein regions is essential for autophagy in yeast. Journal of molecular biology, 433(5), 166809.
Ravikumar, B., Sarkar, S., Davies, J. E., Futter, M., Garcia-Arencibia, M., Green-Thompson, Z. W., Jimenez-Sanchez, M., Korolchuk, V. I., Lichtenberg, M., & Luo, S. (2010). Regulation of mammalian autophagy in physiology and pathophysiology. Physiological reviews, 90(4), 1383-1435.
Scarlett, J. L., & Murphy, M. P. (1997). Release of apoptogenic proteins from the mitochondrial intermembrane space during the mitochondrial permeability transition. FEBS letters, 418(3), 282-286.
Scott, S. V., & Klionsky, D. J. (1998). Delivery of proteins and organelles to the vacuole from the cytoplasm. Current opinion in cell biology, 10(4), 523-529.
Shpilka, T., Weidberg, H., Pietrokovski, S., & Elazar, Z. (2011a). Atg8: an autophagy-related ubiquitin-like protein family. Genome Biology, 12(7), 226. https://doi.org/10.1186/gb-2011-12-7-226
Shpilka, T., Weidberg, H., Pietrokovski, S., & Elazar, Z. (2011b). Atg8: an autophagy-related ubiquitin-like protein family. Genome Biology, 12(7), 1-11.
Shravage, B. V., Hill, J. H., Powers, C. M., Wu, L., & Baehrecke, E. H. (2013). Atg6 is required for multiple vesicle trafficking pathways and hematopoiesis in Drosophila. Development, 140(6), 1321-1329.
Stasyk, O. V., Stasyk, O. G., Mathewson, R. D., Farré, J.-C., Nazarko, V. Y., Krasovska, O. S., Subramani, S., Cregg, J. M., & Sibirny, A. A. (2006). Atg28, a novel coiled-coil protein involved in autophagic degradation of peroxisomes in the methylotrophic yeast Pichia pastoris. Autophagy, 2(1), 30-38.
Straub, M., Bredschneider, M., & Thumm, M. (1997). AUT3, a serine/threonine kinase gene, is essential for autophagocytosis in Saccharomyces cerevisiae. Journal of bacteriology, 179(12), 3875-3883.
Sun, Q., Fan, W., Chen, K., Ding, X., Chen, S., & Zhong, Q. (2008). Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proceedings of the National Academy of Sciences, 105(49), 19211-19216.
Torggler, R., Papinski, D., & Kraft, C. (2017). Assays to monitor autophagy in Saccharomyces cerevisiae. Cells, 6(3), 23.
Ungermann, C., & Reggiori, F. (2018). Atg9 proteins, not so different after all. Autophagy, 14(8), 1456-1459. https://doi.org/10.1080/15548627.2018.1477382
Vyas, S., Zaganjor, E., & Haigis, M. C. (2016). Mitochondria and cancer. Cell, 166(3), 555-566.
Wang, C., & Youle, R. J. (2009). The role of mitochondria in apoptosis. Annual review of genetics, 43, 95-118.
Wang, K., Jin, M., Liu, X., & Klionsky, D. J. (2013). Proteolytic processing of Atg32 by the mitochondrial i-AAA protease Yme1 regulates mitophagy. Autophagy, 9(11), 1828-1836.
Wang, X., Su, B., Lee, H.-g., Li, X., Perry, G., Smith, M. A., & Zhu, X. (2009). Impaired balance of mitochondrial fission and fusion in Alzheimer's disease. Journal of neuroscience, 29(28), 9090-9103.
Watanabe, Y., Noda, N. N., Kumeta, H., Suzuki, K., Ohsumi, Y., & Inagaki, F. (2010). Selective transport of α-mannosidase by autophagic pathways: structural basis for cargo recognition by Atg19 and Atg34. Journal of Biological Chemistry, 285(39), 30026-30033.
Wood, V., Gwilliam, R., Rajandream, M.-A., Lyne, M., Lyne, R., Stewart, A., Sgouros, J., Peat, N., Hayles, J., & Baker, S. (2002). The genome sequence of Schizosaccharomyces pombe. Nature, 415(6874), 871-880.
Yamamoto, H., Zhang, S., & Mizushima, N. (2023). Autophagy genes in biology and disease. Nature Reviews Genetics, 1-19.
Yang, Z., Huang, J., Geng, J., Nair, U., & Klionsky, D. J. (2006). Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell, 17(12), 5094-5104. https://doi.org/10.1091/mbc.e06-06-0479
Yao, Z., Delorme-Axford, E., Backues, S. K., & Klionsky, D. J. (2015). Atg41/Icy2 regulates autophagosome formation. Autophagy, 11(12), 2288-2299.
Yen, W.-L., Legakis, J. E., Nair, U., & Klionsky, D. J. (2007). Atg27 is required for autophagy-dependent cycling of Atg9. Molecular biology of the cell, 18(2), 581-593.
Zientara-Rytter, K., & Subramani, S. (2020). Mechanistic Insights into the Role of Atg11 in Selective Autophagy. J Mol Biol, 432(1), 104-122. https://doi.org/10.1016/j.jmb.2019.06.017
CAPTCHA Image