Ferdowsi University of Mashhad

Document Type : Research Articles

Authors

1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

2 Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran

3 Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Iran

4 The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia

5 Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Transplantation of mesenchymal stem cells (MSCs) is a promising strategy in regenerative medicine. These cells can differentiate into chondrocytes, fibroblasts, or osteoblasts, essential components in bone healing. Dysregulated inflammation, resulting from a decreased or augmented immune response, can suppress bone healing. To overcome this problem, different strategies have been applied to improve the anti-inflammatory and immunomodulatory potencies of MSCs. Several studies have explored the potential of using small molecules to enhance the process of bone formation and regeneration. In addition to the proven safety and efficacy of lithium in managing bipolar disorder over many years, it has been reported in several studies that it could potentially contribute to an increase in bone mass. Some have focused on the role of lithium chloride (LiCl) in activating the WNT/β-Catenin pathway, which is involved in the differentiation of MSCs into osteoblasts. In this study, we evaluated the ability of adipose-derived mesenchymal stem cells (Ad-MSCs) treated with LiCl to differentiate into bone cells. To assess osteogenesis, mineralization was evaluated in cells cultured in an osteogenic induction medium. In addition to checking the expression of genes related to bone formation, we also investigated the expression of several genes related to immunomodulation at the mRNA level. We observed that LiCl enhanced the osteogenesis of Ad-MSCs, as evidenced by an increase in mineralization and the enhanced expression of osteogenic markers. Moreover, the expression of cytokines, which promote the anti-inflammatory behavior of these cells, was augmented. These findings could potentially be clinically relevant to improving conditions associated with bone loss, such as osteopenia and osteoporosis.

Keywords

Gholamine B., Bahrami S., Sarzaeem M. M. and Niknejad H. (2022) Recent advances on small molecules in osteogenic differentiation of stem cells and the underlying signaling pathways. Stem Cell Res Ther 13:1-22.
Arioka M., Takahashi-Yanaga F., Sasaki M., Yoshihara T., Morimoto S., Hirata M., Mori Y. and Sasaguri T. (2014) Acceleration of bone regeneration by local application of lithium: Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis. Biochem Pharmacol 90:397-405.
Bai J., Xu Y., Dieo Y. and Sun G. (2019) Combined low-dose LiCl and LY294002 for the treatment of osteoporosis in ovariectomized rats. J Orthop Surg Res 14:1-14.
Barnsley J., Buckland G., Chan P., Ong A., Ramos A., Baxter M., Laskou F., Dennison E., Cooper C. and Patel H. P. (2021) Pathophysiology and treatment of osteoporosis: challenges for clinical practice in older people. Aging Clin Exp Res 33:759-773.
Bertacchini J., Magaro M. S., Potì F. and Palumbo C. (2018) Osteocytes specific GSK3 inhibition affects in vitro osteogenic differentiation. Biomedicines 6:61.
Bidkhori H. R., Farshchian M., Kazemi Noughabi M., Hassanzadeh H. and Rafatpanah H. (2023) Alteration of immunoregulatory genes expression in mesenchymal stromal cells upon priming with B18R as an interferon binding protein. Iran J Basic Med Sci 26:241-247.
Birjandi A. A., Suzano F. R. and Sharpe P. T. (2020) Drug Repurposing in Dentistry; towards Application of Small Molecules in Dentin Repair. Int J Mol Sci 21.
Bonjour J. P., Chevalley T., Ferrari S. and Rizzoli R. (2009) The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex 51 Suppl 1:S5-17.
Chen R., Xie Y., Zhong X., Chen F., Gong Y., Wang N. and Wang D. (2021) MSCs derived from amniotic fluid and umbilical cord require different administration schemes and exert different curative effects on different tissues in rats with CLP-induced sepsis. Stem Cell Res Ther 12:1-12.
Clément-Lacroix P., Ai M., Morvan F., Roman-Roman S., Vayssière B., Belleville C., Estrera K., Warman M. L., Baron R. and Rawadi G. (2005) Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci U S A 102:17406-17411.
Fei C. M., Guo J., Zhao Y. S., Zhao S. D., Zhen Q. Q., Shi L., Li X. and Chang C. K. (2018) Clinical significance of hyaluronan levels and its pro-osteogenic effect on mesenchymal stromal cells in myelodysplastic syndromes. J Transl Med 16:234.
Galli C., Piemontese M., Lumetti S., Manfredi E., Macaluso G. M. and Passeri G. (2013) GSK3β-inhibitor lithium chloride enhances activation of Wnt canonical signaling and osteoblast differentiation on hydrophilic titanium surfaces. Clin Oral Implants Res 24:921-927.
Götherström C., David A. L., Walther-Jallow L., Åström E. and Westgren M. (2021) Mesenchymal Stem Cell Therapy for Osteogenesis Imperfecta. Clin Obstet Gynecol 64:898-903.
Haghighitalab A., Matin M. M., Amin A., Minaee Sh., Bidkhori H. R., Doeppner T. R., Bahrami AR. (2021) Investigating the effects of IDO1, PTGS2, and TGF-β1 overexpression on immunomodulatory properties of hTERT-MSCs and their extracellular vesicles. Scientific Reports 11:87153-87157.
Hu X., Wang Z., Shi J., Guo X., Wang L., Ping Z., Tao Y., Yang H., Zhou J., Xu Y. and Geng D. (2017) Lithium chloride inhibits titanium particle-induced osteoclastogenesis by inhibiting the NF-κB pathway. Oncotarget 8:83949-83961.
Huang L., Yin X., Chen J., Liu R., Xiao X., Hu Z., He Y. and Zou S. (2021) Lithium chloride promotes osteogenesis and suppresses apoptosis during orthodontic tooth movement in osteoporotic model via regulating autophagy. Bioact Mater 6:3074-3084.
Kulterer B., Friedl G., Jandrositz A., Sanchez-Cabo F., Prokesch A., Paar C., Scheideler M., Windhager R., Preisegger K. H. and Trajanoski Z. (2007) Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics 8:70.
Kushioka J., Chow S. K., Toya M., Tsubosaka M., Shen H., Gao Q., Li X., Zhang N. and Goodman S. B. (2023) Bone regeneration in inflammation with aging and cell-based immunomodulatory therapy. Inflamm Regen 43:29.
Li D., Xie X., Yang Z., Wang C., Wei Z. and Kang P. (2018) Enhanced bone defect repairing effects in glucocorticoid-induced osteonecrosis of the femoral head using a porous nano-lithium-hydroxyapatite/gelatin microsphere/erythropoietin composite scaffold. Biomater Sci 6:519-537.
Li H., Yue L., Xu H., Li N., Li J., Zhang Z. and Zhao R. C. (2019) Curcumin suppresses osteogenesis by inducing miR-126a-3p and subsequently suppressing the WNT/LRP6 pathway. Aging (Albany NY) 11:6983-6998.
Li L., Wang R., Li B., Liang W., Pan H., Cui X., Tang J. and Li B. (2017) Lithium doped calcium phosphate cement maintains physical mechanical properties and promotes osteoblast proliferation and differentiation. J Biomed Mater Res B Appl Biomater 105:944-952.
Mitchell J. and Lo K. W. H. (2022) Small molecule-mediated regenerative engineering for craniofacial and dentoalveolar bone. Front Bioeng Biotechnol 10:1003936.
Noughabi MK., Matin M. M., Farshchian M. and Bahrami AR. (2023) Immunomodulatory Properties of Mouse Mesenchymal Stromal/Stem Cells Upon Ectopic Expression of Immunoregulator Nanos2. Stem Cell Rev Rep 19:734-753.
Ofiteru A. M., Becheru D. F., Gharbia S., Balta C., Herman H., Mladin B., Ionita M., Hermenean A. and Burns J. S. (2020) Qualifying osteogenic potency assay metrics for human multipotent stromal cells: TGF-β2 a telling eligible biomarker. Cells 9:2559.
Park J. H., Lee N. K. and Lee S. Y. (2017) Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Mol Cells 40:706-713.
Posch A. T., de Avellar-Pinto J. F., Malta F. S., Marins L. M., Teixeira L. N., Peruzzo D. C., Martinez E. F., Clemente-Napimoga J. T., Duarte P. M. and Napimoga M. H. (2020) Lithium chloride improves bone filling around implants placed in estrogen-deficient rats. Arch Oral Biol 111:104644.
Puglisi-Allegra S., Ruggieri S. and Fornai F. (2021) Translational evidence for lithium-induced brain plasticity and neuroprotection in the treatment of neuropsychiatric disorders. 11:366.
Shang L., Liu Z., Ma B., Shao J., Wang B., Ma C. and Ge S. (2021) Dimethyloxallyl glycine/nanosilicates-loaded osteogenic/angiogenic difunctional fibrous structure for functional periodontal tissue regeneration. Bioact Mater 6:1175-1188.
Shi Z., Zhou Q., Gao S., Li W., Li X., Liu Z., Jin P. and Jiang J. (2019) Silibinin inhibits endometrial carcinoma via blocking pathways of STAT3 activation and SREBP1-mediated lipid accumulation. Life Sci 217:70-80.
Wong S. K., Chin K. Y. and Ima-Nirwana S. (2020) The Skeletal-Protecting Action and Mechanisms of Action for Mood-Stabilizing Drug Lithium Chloride: Current Evidence and Future Potential Research Areas. Front Pharmacol 11:430.
Wu N., Luo Q., Huang Y., Wan L., Hou X., Jiang Z., Li Y., Qiu J., Chen P., Yu K., Zhuang J. and Yang Y. (2023) Lithium Chloride Exerts Anti-Inflammatory and Neuroprotective Effects by Inhibiting Microglial Activation in LPS-Induced Retinal Injury. Invest Ophthalmol Vis Sci 64:35.
Yang C., Wang W., Zhu K., Liu W., Luo Y., Yuan X., Wang J., Cheng T. and Zhang X. (2019) Lithium chloride with immunomodulatory function for regulating titanium nanoparticle-stimulated inflammatory response and accelerating osteogenesis through suppression of MAPK signaling pathway. Int Journal Nanomed:7475-7488.
Zhang J., Cai L., Tang L., Zhang X., Yang L., Zheng K., He A., Boccaccini A. R., Wei J. and Zhao J. (2018) Highly dispersed lithium doped mesoporous silica nanospheres regulating adhesion, proliferation, morphology, ALP activity and osteogenesis related gene expressions of BMSCs. Colloids Surf B 170:563-571.
Zhang M., Zhang P., Liu Y. and Zhou Y. (2017) GSK3 inhibitor AR-A014418 promotes osteogenic differentiation of human adipose-derived stem cells via ERK and mTORC2/Akt signaling pathway. Biochem Biophys Res Commun 490:182-188.
Zhang Y. L., Zhu Z. Z., Zhang L. C. and Wang G. (2021) Lithium chloride prevents glucocorticoid-induced osteonecrosis of femoral heads and strengthens mesenchymal stem cell activity in rats. Chin Med J (Engl) 134:2214-2222.
CAPTCHA Image