Ferdowsi University of Mashhad

Document Type : Research Articles


1 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

3 Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

4 Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran


Myostatin (MSTN) is primarily expressed in skeletal muscle tissue and acts as a negative regulator of skeletal muscle growth by inhibiting differentiation and proliferation of myoblasts. Inhibition of MSTN expression could result in muscular hypertrophy. An effective therapeutic approach based on specific silencing of a target gene is provided by RNA interference. The distribution of biologically active small interfering RNAs (siRNAs) inside the target cells/ tissue, is a significant problem due to the limited stability and delivery of siRNAs. Strategies depending on vector delivery have also a limited clinical utility due to safety concerns. Thus direct application of active siRNAs in vivo is the preferred strategy. We described the efficiency of intramuscular and intraperitoneal injections of MSTN-siRNA conjugated with cholesterol into the skeletal muscle of mice. The designed siRNA molecule was complementary to the exon II of the mouse MSTN gene. Mice were injected with a weekly dose of 10 μg/kg conjucated siRNA-cholesterol intraperitoneally or intramuscularly. Our findings suggested that within a few weeks of application, siRNA-treated mice showed a significant increase in muscle mass and suppressed MSTN gene expression. Even though both types of injections increased muscle weight, intramuscular siRNA injections suppressed the MSTN gene more effectively, whereas intraperitoneal RNA injections had a more significant impact on total body weight. The cholesterol-conjugated siRNA platform discussed here may hold promise for treating several skeletal muscle-related diseases, such as atrophic muscle disease, muscular dystrophy, and type II diabetes.


Bakhtiyari S., Haghani G., Basati G. and Karimfar M. H. (2013) siRNA therapeutics in the treatment of diseases. Therapeutic Delivery 4:1, 45-57.
Bogdanovich S., Krag T. O., Barton E. R., Morris L. D., Whittemore L. A., Ahima, R. S., et al. (2002) Functional improvement of dystrophic muscle by myostatin blockade. Nature 420:6914, 418-421.
Bustin S. A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., et al. (2009) The MIQE Guidelines: M inimum I nformation for Publication of Q uantitative Real-Time PCR E xperiments, Oxford University Press.
Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibé B. and Georges M. (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics 38:7, 813-818.
Danesh Mesgaran M., Kargar H., Mesgaran S. D. and Javadmanesh A. (2021) Peripartal rumen-protected L-carnitine manipulates the productive and blood metabolic responses in high producing Holstein dairy cows. Frontiers in Veterinary Science :1514.
Elbashir S. M., Lendeckel W. and Tuschl T. (2001) RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Development 15:2, 188-200.
Foster K., Foster H. and Dickson J. G. (2006) Gene therapy progress and prospects: Duchenne muscular dystrophy. Gene Therapy 13:24, 1677-1685.
Grobet L., Royo Martin L. J., Poncelet D., Pirottin D., Brouwers B., Riquet J., et al. (1997) A deletion in the bovine myostatin gene causes the double–muscled phenotype in cattle. Nature Genetics 17:1, 71-74.
Ji S., Losinski R. L., Cornelius S. G., Frank G. R., Willis G. M., Gerrard D. E., et al. (1998) Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. American Journal of Physiology-Regulatory, Integrative Comparative Physiology 275:4, 65-73.
Kawakami E., Kawai N., Kinouchi N., Mori H., Ohsawa Y., Ishimaru N., et al. (2013) Local applications of myostatin-siRNA with atelocollagen increase skeletal muscle mass and recovery of muscle function. PLoS One 8:5, e64719.
Khan T., Weber H., DiMuzio J., Matter A., Dogdas B., Shah T., et al. (2016) Silencing myostatin using cholesterol-conjugated siRNAs induces muscle growth. Molecular Therapy-Nucleic Acids 5, e342.
Kinouchi N., Ohsawa Y., Ishimaru N., Ohuchi H., Sunada Y., Hayashi Y., et al. (2008) Atelocollagen-mediated local and systemic applications of myostatin-targeting siRNA increase skeletal muscle mass. Gene Therapy 15:15, 1126-1130.
Lares M. R., Rossi J. J. and Ouellet D. L. (2010) RNAi and small interfering RNAs in human disease therapeutic applications. Trends in Biotechnology 28:11, 570-579.
Laws N., Cornford-Nairn R. A., Irwin N., Johnsen R., Fletcher S., Wilton S. D., et al. (2008) Long-term administration of antisense oligonucleotides into the paraspinal muscles of mdx mice reduces kyphosis. Journal of Applied Physiology 105:2, 662-668.
Lee S. J. and McPherron A. C. (2001) Regulation of myostatin activity and muscle growth. Proceedings of the National Academy of Sciences 98:16, 9306-9311.
Lee Y., Jeon K., Lee J.T., Kim S. and Kim V. N. (2002) MicroRNA maturation: stepwise processing and subcellular localization. The EMBO Journal 21:17, 4663-4670.
Lorenz C., Hadwiger P., John M., Vornlocher H. P. and Unverzagt C. (2004) Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorganic Medicinal Chemistry Letters 14:19, 4975-4977.
Magee T. R., Artaza J. N., Ferrini M. G., Vernet D., Zuniga F. I., Cantini L., et al. (2006) Myostatin short interfering hairpin RNA gene transfer increases skeletal muscle mass. The Journal of Gene Medicine: A cross‐disciplinary journal for research on the science of gene transfer its clinical applications 8:9, 1171-1181.
Martin S. E. and Caplen N. J. (2007) Applications of RNA interference in mammalian systems. Annual Review of Genomics and Human Genetics 8:81-108.
McManus M. T., Petersen C. P., Haines B. B., Chen J. and Sharp P. A. (2002) Gene silencing using micro-RNA designed hairpins. Gene silencing using micro-RNA designed hairpins. RNA 8:6, 842-850.
McPherron A. C., Lawler A. M. and Lee S. J. (1997) Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. Nature 387:6628, 83-90.
McPherron A. C. and Lee S. J. (1997) Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences 94:23, 12457-12461.
McPherron A. C. and Lee S. J. (2002) Suppression of body fat accumulation in myostatin-deficient mice. The Journal of Clinical Investigation 109:5, 595-601.
Morrissey D. V., Lockridge J. A., Shaw L., Blanchard K., Jensen K., Breen W., et al. (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nature Biotechnology 23:8, 1002-1007.
Mosher D. S., Quignon P., Bustamante C. D., Sutter N. B., Mellersh C. S., Parker H. G. and Ostrander, E. A. (2007) A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genetics 3:5, e79.
Ohsawa Y., Hagiwara H., Nakatani M., Yasue A., Moriyama K., Murakami T. and Sunada Y. (2006) Muscular atrophy of caveolin-3–deficient mice is rescued by myostatin inhibition. The Journal of Clinical Investigation 116:11, 2924-2934.
Parise G., McKinnell I. W. and Rudnicki M. A. (2008) Muscle satellite cell and atypical myogenic progenitor response following exercise. Muscle Nerve: Official Journal of the American Association of Electrodiagnostic Medicine 37:5, 611-619.
Payande H. (2019) Inhibition of myostatin gene expression in C2C12 cells by RNAi and DNAi methods. Master of Science Thesis. Ferdowsi University of Mashhad.
Payande H., Ghahremani S. M. and Javadmanesh A. (2019) The inhibitory effect of myostatin-specific siRNA on the differentiation and growth of C2C12 cells. The Proceedings of the 3rd International and the 11th National Biotechnology Congress of Islamic Republic of Iran. 1-3 September, Tehran, Iran.
Riasi M., Javadmanesh A. and Mozaffari-Jovin S. (2022) Inhibition of myostatin gene expression using siRNA in mice. The Proceedings of the 22nd National and 10th International Congress on Biology. 31 Aug-2 Sep, Sharekord, Iran.
Roozbeh, B., Moazami, M., Rashidlamir, A., Moosavi, Z., Javadmanesh, A. (2019). The Effect of resistance training and growth hormone injection on circulating IGF-1 and IGFBP-3 levels in a rat model. Iranian Journal of Veterinary Science and Technology 11(1): 13-18.
Ruan W. and Lai M. (2007) Actin, a reliable marker of internal control? Clinica Chimica Acta 385:1-2, 1-5.
Scherr M. and Eder M. (2007). Gene silencing by small regulatory RNAs in mammalian cells. Cell cycle 6:4, 444-449.
Schuelke M., Wagner K. R., Stolz L. E., Hübner C., Riebel T., Kömen W., et al. (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. New England Journal of Medicine 350:26, 2682-2688.
Soleimani S., Sekhavati M. H. and Javadmanesh A. (2019) Sequencing and Bioinformatic Investigation of Introducing a Repressive Micro-RNA Target Sites in the 3'UTR of Myostatin Gene in some Indigenous Sheep Breeds of Iran. Iranian Journal of animal science research 11: 111-119.
Song E., Zhu P., Lee S. K., Chowdhury D., Kussman S., Dykxhoorn D. M., et al. (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nature Biotechnology 23:6, 709-717.
Soutschek J., Akinc A., Bramlage B., Charisse K., Constien R., Donoghue M., et al. (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:7014, 173-178.
Wen Y., Murach K. A., Vechetti Jr I. J., Fry C. S., Vickery C., Peterson C. A., et al. (2018) MyoVision: software for automated high-content analysis of skeletal muscle immunohistochemistry. Journal of Applied Physiology 124:1, 40-51.
Whittemore L. A., Song K., Li X., Aghajanian J., Davies M., Girgenrath S., et al. (2003) Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochemical Biophysical Research Communications 300:4, 965-971.
Wolfrum C., Shi S., Jayaprakash K. N., Jayaraman M., Wang G., Pandey R. K., et al. (2007) Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nature Biotechnology 25:10, 1149-1157.
Zeng Y., Wagner E. J. and Cullen B. R. (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Molecular Cell 9:6, 1327-1333.