Ferdowsi University of Mashhad

Document Type : Research Articles

Authors

1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

2 National Institute of Genetic Engineering and Biotechnology, Tehran, Iran

3 Iranian Blood Transfusion Organization Research Center, Tehran, Iran

4 School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

Glaucoma remains one of the major causes of blindness in today's world. The progressive field of stem cell proposes an exciting potential for discovering novel therapies. Here, we report the development of an easy and high throughput method for differentiation of retinal ganglion cells (RGC) and bipolar cells from human adipose tissue-derived mesenchymal stem cells (hADSCs) using PAX6 (+5a) gene expression, a master gene in development of the vertebrate visual system. HADSCs was isolated from fat tissues and confirmed by their surface markers and differentiation potential into adipocytes and osteocytes lineages. Then, the coding region of human PAX6 (+5a) gene was cloned and lentiviral particles were produced. HADSCs differentiation was characterized by morphological characteristics, qRT-PCR and immunocytochemistry (ICC). The hADSCs were isolated successfully with high yield and purity (99%). After 30 hours post transduction by pLEX-pax6- pur lentiviral vectors in fibronectin supplemented medium, cells gradually showed the characteristic morphology of neuronal cells. QRT- PCR and ICC confirmed deriving of mainly RGC and marginally bipolar cells. The current investigation demonstrates the feasibility of differentiation of RGCs and bipolar cells from hADSCs using expression of PAX6 (+5a) in the medium supplemented by fibronectin.

Keywords

1- Azuma N., Tadokoro K., Asaka A., Yamada M., Yamaguchi Y., Handa H., Matsushima S., Watanabe T., Kohsaka S., Kida Y., Shiraishi T., Ogura T., Shimamura K. and Nakafuku M. (2005) The Pax6 isoform bearing an alternative spliced exon promotes the development of the neural retinal structure. Human molecular genetics 14:735-745.
2- Baker P. S. and Brown G. C. (2009) Stem-cell therapy in retinal disease. Curr Opin Ophthalmol 20:175-181.
3- Buchholz D. E., Pennington B. O., Croze R. H., Hinman C. R., Coffey P. J. and Clegg D. O. (2013) Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium. Stem Cells Translational Medicine 2:384-393.
4- Cao Q., Benton R. L. and Whittemore S. R. (2002) Stem cell repair of central nervous system injury. Journal of neuroscience research 68:501-510.
5- Estes B. T., Diekman B. O., Gimble J. M. and Guilak F. (2010) Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat Protoc 5:1294-1311.
6- Fraichard A., Chassande O., Bilbaut G., Dehay C., Savatier P. and Samarut J. (1995) In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J Cell Sci 108 ( Pt 10):3181-3188.
7- Gimble J. M., Katz A. J. and Bunnell B. A. (2007) Adipose-derived stem cells for regenerative medicine. Circulation research 100:1249-1260.
8- Haddad-Mashadrizeh A., Bahrami A. R., Matin M. M., Edalatmanesh M. A., Zomorodipour A., Gardaneh M., Farshchian M. and Momeni-Moghaddam M. (2013) Human adipose-derived mesenchymal stem cells can survive and integrate into the adult rat eye following xenotransplantation. Xenotransplantation 20:165–176.
9- Hever A., Williamson K. and Van Heyningen V. (2006) Developmental malformations of the eye: the role of PAX6, SOX2 and OTX2. Clinical genetics 69:459-470.
10- Huang L., Liang J., Geng Y., Tsang W. M., Yao X., Jhanji V., Zhang M., Cheung H. S., Pang C. P. and Yam G. H. (2013) Directing adult human periodontal ligament-derived stem cells to retinal fate. Investigative Ophthalmology and Visual Science 54:3965-3974.
11- Huang W., Fileta J., Guo Y. and Grosskreutz C. L. (2006) Downregulation of Thy1 in retinal ganglion cells in experimental glaucoma. Current eye research 31:265-271.
12- Huang Y., Enzmann V. and Ildstad S. T. (2011) Stem cell-based therapeutic applications in retinal degenerative diseases. Stem Cell Rev 7:434-445.
13- Jagatha B., Divya M. S., Sanalkumar R., Indulekha C. L., Vidyanand S., Divya T. S., Das A. V. and James J. (2009) In vitro differentiation of retinal ganglion-like cells from embryonic stem cell derived neural progenitors. Biochemical and biophysical research communications 380:230-235.
14- Jayaram H., Becker S. and Limb G. A. (2011) Stem Cell Based Therapies for Glaucoma.
15- Jin Z. B., Okamoto S., Mandai M. and Takahashi M. (2009) Induced pluripotent stem cells for retinal degenerative diseases: a new perspective on the challenges. J Genet 88:417-424.
16- John S., Natarajan S., Parikumar P., Shanmugam P. M., Senthilkumar R., Green D. W. and Abraham S. J. (2013) Choice of Cell Source in Cell-Based Therapies for Retinal Damage due to Age-Related Macular Degeneration: A Review. J Ophthalmol 2013:465169.
17- Jurgens W. J., Oedayrajsingh-Varma M. J., Helder M. N., Zandiehdoulabi B., Schouten T. E., Kuik D. J., Ritt M. J. and van Milligen F. J. (2008) Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell and tissue research 332:415-426.
18- Kayama M., Kurokawa M. S., Ueda Y., Ueno H., Kumagai Y., Chiba S., Takada E., Ueno S., Tadokoro M. and Suzuki N. (2010) Transfection with pax6 gene of mouse embryonic stem cells and subsequent cell cloning induced retinal neuron progenitors, including retinal ganglion cell-like cells, in vitro. Ophthalmic research 43:79-91.
19- Kerrigan–Baumrind L. A., Quigley H. A., Pease M. E., Kerrigan D. F. and Mitchell R. S. (2000) Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Investigative Ophthalmology & Visual Science 41:741-748.
20- Kokai L. E., Rubin J. P. and Marra K. G. (2005) The potential of adipose-derived adult stem cells as a source of neuronal progenitor cells. Plast Reconstr Surg 116:1453-1460.
21- Kolpak A., Zhang J. and Bao Z. Z. (2005) Sonic hedgehog has a dual effect on the growth of retinal ganglion axons depending on its concentration. The Journal of neuroscience 25:3432-3441.
22- Kuehn M. H., Fingert J. H. and Kwon Y. H. (2005) Retinal ganglion cell death in glaucoma: mechanisms and neuroprotective strategies. development 1:3.
23- MacLaren R. E., Pearson R. A., MacNeil A., Douglas R. H., Salt T. E., Akimoto M., Swaroop A., Sowden J. C. and Ali R. R. (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444:203-207.
24- Marquardt T. and Gruss P. (2002) Generating neuronal diversity in the retina: one for nearly all. Trends in neurosciences 25:32-38.
25- Moshiri A., Close J. and Reh T. A. (2004) Retinal stem cells and regeneration. Int J Dev Biol 48:1003-1014.
26- Osakada F., Jin Z. B., Hirami Y., Ikeda H., Danjyo T., Watanabe K., Sasai Y. and Takahashi M. (2009) In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. Journal of cell science 122:3169-3179.
27- Pevny L. H., Sockanathan S., Placzek M. and Lovell-Badge R. (1998) A role for SOX1 in neural determination. Development 125:1967-1978.
28- Philips G. T., Stair C. N., Young Lee H., Wroblewski E., Berberoglu M. A., Brown N. L. and Mastick G. S. (2005) Precocious retinal neurons: Pax6 controls timing of differentiation and determination of cell type. Developmental biology 279:308-321.
29- Pichaud F. and Desplan C. (2002) Pax genes and eye organogenesis. Curr Opin Genet Dev 12:430-434.
30- Quigley H. A. and Broman A. T. (2006) The number of people with glaucoma worldwide in 2010 and 2020. British Journal of Ophthalmology 90:262-267.
31- Ramsden C. M., Powner M. B., Carr A. J., Smart M. J., da Cruz L. and Coffey P. J. (2013) Stem cells in retinal regeneration: past, present and future. Development 140:2576-2585.
32- Rasmussen J. G., Frobert O., Holst-Hansen C., Kastrup J., Baandrup U., Zachar V., Fink T. and Simonsen U. (2012) Comparisson of human adipose- derived stem cells and bone marrow- derived stem cells in a myocardial infarction model. Cell Transplant.
33- Sapieha P. S., Peltier M., Rendahl K. G., Manning W. C. and Di Polo A. (2003) Fibroblast growth factor-2 gene delivery stimulates axon growth by adult retinal ganglion cells after acute optic nerve injury. Molecular and Cellular Neuroscience 24:656-672.
34- Schmittgen T. D. and Livak K. J. (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101-1108.
35- Shimizu N., Watanabe H., Kubota J., Wu J., Saito R., Yokoi T., Era T., Iwatsubo T., Watanabe T., Nishina S., Azuma N., Katada T. and Nishina H. (2009) Pax6-5a promotes neuronal differentiation of murine embryonic stem cells. Biol Pharm Bull 32:999-1003.
36- Singhal S., Bhatia B., Jayaram H., Becker S., Jones M. F., Cottrill P. B., Khaw P. T., Salt T. E. and Limb G. A. (2012) Human Müller Glia with Stem Cell Characteristics Differentiate into Retinal Ganglion Cell (RGC) Precursors In Vitro and Partially Restore RGC Function In Vivo Following Transplantation. Stem cells translational medicine 1:188-199.
37- Spence J. R., Madhavan M., Ewing J. D., Jones D. K., Lehman B. M. and Del Rio-Tsonis K. (2004) The hedgehog pathway is a modulator of retina regeneration. Development 131:4607-4621.
38- Wallace V. A. (2007) Stem cells: a source for neuron repair in retinal disease. Canadian Journal of Ophthalmology/Journal Canadien d'Ophtalmologie 42:442-446.
39- Wong I. Y. H., Poon M. W., Pang R. T. W., Lian Q. and Wong D. (2011) Promises of stem cell therapy for retinal degenerative diseases. Graefe's Archive for Clinical and Experimental Ophthalmology 249:1439-1448.
40- Yasuda T., Kajimoto Y., Fujitani Y., Watada H., Yamamoto S., Watarai T., Umayahara Y., Matsuhisa M., Gorogawa S., Kuwayama Y., Tano Y., Yamasaki Y. and Hori M. (2002) PAX6 mutation as a genetic factor common to aniridia and glucose intolerance. Diabetes 51:224-230.
41- Zhang X. M. and Yang X.-J. (2001) Regulation of retinal ganglion cell production by Sonic hedgehog. Development 128:943-957.
CAPTCHA Image