Ferdowsi University of Mashhad

Document Type : Research Articles

Authors

1 دانشگاه شاهد

2 دانشگاه علوم پزشکی بقیه الله (عج)

3 دانشگاه امام حسین(ع)

Abstract

Shigella and Escherichia belong to the Enterobacteriaceae family which are the cause for most of the diarrheal cases in the world. Shigella can cause bacterial dysenteries and shigellosis. One of the most effective proteins for pathogenesis is invasion plasmid antigen C (IpaC). Other bacteria like Enterotoxogenic (ETEC), Enterohemorrhagic (EHEC), and E.coli can also cause diarrhea and produce intestinal disorders. Colonization factor antigen I (CFA/I), a critical virulence protein for these infections, has two subunits i.e. CfaB and CfaE. EHEC Attachment of bacteria is the main step of infection with intimin playing the key role in this function. This study was designed to elicit protection against the majority of diarrheal pathogens via development of polyvalent vaccine against Shigella, ETEC and EHEC. In silico techniques are as best tools to design new vaccines. For this purpose the immunogenic epitopes of CfaB, IpaC and Intimin were identified through bioinformatic tools and were then selected as major antigens to construct a chimeric protein (CII). The humoral and cellular immunities were analyzed bioinformatically. Prediction of allergens and mapping of IgE epitopes were carried out. The bioinformatic analysis showed each domain was folded separately in fusion structure. CII had many T and B cell epitopes in both linear and three-dimensional structures. This prediction of the chimeric construct had the potential to induce CD4+ and CD8+ immune responses against these pathogens. In addition CII could be accessible to surveillance by the immune system in mouse and human. In conclusion, in silico analysis showed that this chimeric protein can be used as a vaccine against Shigella, ETEC and EHEC simultaneously.

Keywords

1- Ahs J. W., Tao W., Lfgren J. and Forsberg B. C. (2010) Diarrheal Diseases in Low-and Middle-Income Countries: Incidence, Prevention and Management. Open Infectious Diseases Journal 4:113-124.
2- Amani J., Mousavi S. L., Rafati S. and Salmanian A. H. (2009) In silico analysis of chimeric espA, eae and tir fragments of Escherichia coli O157:H7 for oral immunogenic applications. Theor Biol Med Model 6:28.
3- Amani J., Salmanian A. H., Rafati S. and Mousavi S. L. Immunogenic properties of chimeric protein from espA, eae and tir genes of Escherichia coli O157: H7. Vaccine 28:6923-6929.
4- Amani J., Salmanian A. H., Rafati S. and Mousavi S. L. (2010) Immunogenic properties of chimeric protein from espA, eae and tir genes of Escherichia coli O157:H7. Vaccine 28:6923-6929.
5- Arai R., Ueda H., Kitayama A., Kamiya N. and Nagamune T. (2001) Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein engineering 14:529.
6- Barzu S., Benjelloun-Touimi Z., Phalipon A., Sansonetti P. and Parsot C. (1997) Functional analysis of the Shigella flexneri IpaC invasin by insertional mutagenesis. Infect Immun 65:1599-1605.
7- Bhasin M., Garg A. and Raghava G. (2005) PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 21:2522-2524.
8- Bhasin M. and Raghava G. (2004a) Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 22:3195-3204.
9- Bhasin M. and Raghava G. (2004b) SVM based method for predicting HLA-DRB1* 0401 binding peptides in an antigen sequence. Bioinformatics 20:421-423.
10- Bhasin M. and Raghava G. (2005) Pcleavage: an SVM based method for prediction of constitutive proteasome and immunoproteasome cleavage sites in antigenic sequences. Nucleic acids research 33:W202-W207.
11- Bhatnagar S., Bhan M. K., Sommerfelt H., Sazawal S., Kumar R. and Saini S. (1993) Enteroaggregative Escherichia coli may be a new pathogen causing acute and persistent diarrhea. Scand J Infect Dis 25:579-583.
12- Bouzari S., Shahrokhi N., Dashti A., Janani A. R. and Jafari A. (2010) Construction and evaluation of chimeric heat-labile toxin B subunit and N-terminal (1–75) fragment of colonization factor antigen I gene of enterotoxigenic Escherichia coli. Annals of microbiology 60:255-261.
13- Buus S., Lauemأ¸ller S., Worning P., Kesmir C., Frimurer T., Corbet S., Fomsgaard A., Hilden J., Holm A. and Brunak S. (2003) Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach. Tissue antigens 62:378-384.
14- Davis G. D., Elisee C., Newham D. M. and Harrison R. G. (1999) New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol Bioeng 65:382-388.
15- Dean-Nystrom E. A., Bosworth B. T., Moon H. W. and O'Brien A. D. (1998) Escherichia coli O157:H7 requires intimin for enteropathogenicity in calves. Infect Immun 66:4560-4563.
16- DeVinney R., Stein M., Reinscheid D., Abe A., Ruschkowski S. and Finlay B. B. (1999) Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect Immun 67:2389-2398.
17- Doytchinova I. and Flower D. (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. Bmc Bioinformatics 8:4.
18- Dundas S., Todd W. T., Stewart A. I., Murdoch P. S., Chaudhuri A. K. and Hutchinson S. J. (2001) The central Scotland Escherichia coli O157:H7 outbreak: risk factors for the hemolytic uremic syndrome and death among hospitalized patients. Clin Infect Dis 33:923-931.
19- Eswar N., Webb B., Marti-Renom M. A., Madhusudhan M., Eramian D., Shen M. Y., Pieper U. and Sali A. (2007) Comparative protein structure modeling using Modeller. Curr Protoc Protein Sci 50:1-2.9.
20- Garg A., Kaur H. and Raghava G. (2005) Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure. Proteins: Structure, Function, and Bioinformatics 61:318-324.
21- Garnier J., Gibrat J., Robson B. and Doolittle R. (1996) GOR secondary structure prediction method version IV. Methods Enzymol 266:540-553.
22- Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M. R., Appel R. D. and Bairoch A. (2005) Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook:571-607.
23- Haste Andersen P., Nielsen M. and Lund O. (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Science 15:2558-2567.
24- Jansson L., Tobias J., Lebens M., Svennerholm A. M. and Teneberg S. (2006) The major subunit, CfaB, of colonization factor antigen i from enterotoxigenic Escherichia coli is a glycosphingolipid binding protein. Infect Immun 74:3488-3497.
25- Jaumouille V., Francetic O., Sansonetti P. J. and Tran Van Nhieu G. (2008) Cytoplasmic targeting of IpaC to the bacterial pole directs polar type III secretion in Shigella. EMBO J 27:447-457.
26- Jennison A. V. and Verma N. K. (2004) Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiol Rev 28:43-58.
27- Katouli M., Jaafari A., Farhoudi-Moghaddam A. A. and Ketabi G. R. (1990) Aetiological studies of diarrhoeal diseases in infants and young children in Iran. J Trop Med Hyg 93:22-27.
28- Kaur H. and Raghava G. (2002) BetaTPred: prediction of β-TURNS in a protein using statistical algorithms. Bioinformatics 18:498.
29- Kelley L. A. and Sternberg M. J. E. (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nature protocols 4:363-371.
30- Kim D. E., Chivian D. and Baker D. (2004) Protein structure prediction and analysis using the Robetta server. Nucleic acids research 32:W526-W531.
31- Kimmitt P. T., Harwood C. R. and Barer M. R. (2000) Toxin gene expression by shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. Emerg Infect Dis 6:458-465.
32- Kueltzo L. A., Osiecki J., Barker J., Picking W. L., Ersoy B., Picking W. D. and Middaugh C. R. (2003) Structure-function analysis of invasion plasmid antigen C (IpaC) from Shigella flexneri. J Biol Chem 278:2792-2798.
33- Law D. (2000) Virulence factors of Escherichia coli O157 and other Shiga toxin-producing E. coli. J Appl Microbiol 88:729-745.
34- Li Y. F., Poole S., Nishio K., Jang K., Rasulova F., McVeigh A., Savarino S. J., Xia D. and Bullitt E. (2009) Structure of CFA/I fimbriae from enterotoxigenic Escherichia coli. Proc Natl Acad Sci U S A 106:10793-10798.
35- Luiz W. B., Cavalcante R. C., Paccez J. D., Souza R. D., Sbrogio-Almeida M. E., Ferreira R. C. and Ferreira L. C. (2008) Boosting systemic and secreted antibody responses in mice orally immunized with recombinant Bacillus subtilis strains following parenteral priming with a DNA vaccine encoding the enterotoxigenic Escherichia coli (ETEC) CFA/I fimbriae B subunit. Vaccine 26:3998-4005.
36- Lund O., Nielsen M., Lundegaard C. and Worning P. 2002. CPHmodels 2.0: X3M a computer program to extract 3D models. Vol. 102. 2002.
37- Nazarian S., Mousavi S. L., Rasooli I., Hasannia S. and Pirooznia N. (2013) A PLGA-encapsulated chimeric protein protects against adherence and toxicity of enterotoxigenic Escherichia coli. Microbiol Res.
38- Nazarian S., Mousavi S. L., Rasooli I., Amani J., Bagheri S. and Alerasool M.(2012) An in silico chimeric multi subunit vaccine targeting virulence factors of enterotoxigenic Escherichia coli (ETEC) with its bacterial inbuilt adjuvant. J Microbiol Methods 90:36-45
39- Ole L. and Morten N. (2006) Improved method for predicting linear B-cell epitopes. Immunome Research 2.
40- Picking W. L., Coye L., Osiecki J. C., Barnoski Serfis A., Schaper E. and Picking W. D. (2001) Identification of functional regions within invasion plasmid antigen C (IpaC) of Shigella flexneri. Mol Microbiol 39:100-111.
41- Reche P. A., Glutting J. P. and Reinherz E. L. (2002) Prediction of MHC class I binding peptides using profile motifs. Human immunology 63:701-709.
42- Reche P. A., Glutting J. P., Zhang H. and Reinherz E. L. (2004) Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 56:405-419.
43- Saha S. and Raghava G. (2004) BcePred: Prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. Artificial Immune Systems:197-204.
44- Saha S. and Raghava G. (2006) AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic acids research 34:W202-W209.
45- Saha S. and Raghava G. (2008) ABCPred benchmarking datasets. 2006a.
46- Saxova’P., Buus S., Brunak S. and Keإںmir C. (2003) Predicting proteasomal cleavage sites: a comparison of available methods. International immunology 15:781.
47- Schwede T., Kopp J., Guex N. and Peitsch M. C. (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic acids research 31:3381-3385.
48- Shaikh N., Terajima J. and Watanabe H. (2003) IpaC of Shigella binds to the C-terminal domain of beta-catenin. Microb Pathog 35:107-117.
49- Singh H. and Raghava G. (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17:1236-1237.
50- Svennerholm A. M. and Tobias J. (2008) Vaccines against enterotoxigenic Escherichia coli. Expert Rev Vaccines 7:795-804.
51- Terry C. M., Picking W. L., Birket S. E., Flentie K., Hoffman B. M., Barker J. R. and Picking W. D. (2008a) The C-terminus of IpaC is required for effector activities related to Shigella invasion of host cells. Microbial pathogenesis 45:282-289.
52- Terry C. M., Picking W. L., Birket S. E., Flentie K., Hoffman B. M., Barker J. R. and Picking W. D. (2008b) The C-terminus of IpaC is required for effector activities related to Shigella invasion of host cells. Microb Pathog 45:282-289.
53- Thomopson J., Higgins D. G. and Gibson T. (1994) ClustalW. Nucleic Acids Res 22:4673-4680.
54- Tran Van Nhieu G., Caron E., Hall A. and Sansonetti P. J. (1999) IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J 18:3249-3262.
55- Vlisidou I., Dziva F., La Ragione R. M., Best A., Garmendia J., Hawes P., Monaghan P., Cawthraw S. A., Frankel G., Woodward M. J. and Stevens M. P. (2006) Role of intimin-tir interactions and the tir-cytoskeleton coupling protein in the colonization of calves and lambs by Escherichia coli O157:H7. Infect Immun 74:758-764.
56- Wang Y., Xue Z. and Xu J. (2006) Better prediction of the location of α-turns in proteins with support vector machine. Proteins: Structure, Function, and Bioinformatics 65:49-54.
57- Wilkinson D. L. and Harrison R. G. (1991) Predicting the solubility of recombinant proteins in Escherichia coli. Biotechnology (N Y) 9:443-448.
58- Zhang P., Brusic V. and Basford K. (2009) A hybrid model for prediction of peptide binding to MHC molecules. Advances in Neuro-Information Processing 529-536.
59- Zhang Q., Wang P., Kim Y., Haste-Andersen P., Beaver J., Bourne P. E., Bui H. H., Buus S., Frankild S. and Greenbaum J. (2008) Immune epitope database analysis resource (IEDB-AR). Nucleic acids research 36:W513-W518.
60- Zhang Y. (2008) I-TASSER server for protein 3D structure prediction. Bmc Bioinformatics 9:40.
61- Zuker M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids research 31:3406-3415.
CAPTCHA Image