Ferdowsi University of Mashhad

Document Type : Research Articles

Authors

دانشگاه فردوسی مشهد

Abstract

Nowadays, production of recombinant proteins in eukaryotes is gaining good deal of attention. Transgenic chicken as a eukaryotic system has a high potential for producing recombinant proteins. Post-translational changes, especially glycosylation, are characteristic of the eukaryotic proteins. In practice we need to choose a proper expressing host when considering over-expression of a recombinant protein. Chickens are among the well-considered candidates for such application. Production of transgenic chickens could be achieved in different ways, including application of primordial germ cells. Primordial germ cells are progenitor of sperm and ovum. These cells are round, with a big nucleus and a cytoplasm with lipid and glycogen particles. The first step for having transgenic chickens is isolation and culture of the primordial gem cells. In the present study, these cells were isolated by centrifugation method in presence of ficoll and using magnetic cell sorting, and were cultured in optimal culture medium. These cells were finally characterized with defined methods, like Periodic acid-schiff staining, alkaline phosphates activity assessment, and antibody staining.

Keywords

1. Choi J. W., Kim S., Kim T. M., Kim Y. M., Seo H. W., Park T. S., Jeong J. W., Song G. and Han J. Y. (2010) Basic fibroblast growth factor activates MEK/ERK cell signaling pathway and stimulates the proliferation of chicken primordial germ cells. PloS one 5:e12968.
2. Fan L., Moon J., Wong T., Crodian J. and Collodi P. (2008) Zebrafish primordial germ cell cultures derived from vasa::RFP transgenic embryos. Stem Cells Dev 17:585-597.
3. Fujimoto T., Ukeshima A. and Kiyofuji R. (1976) The origin, migration and morphology of the primordial germ cells in the chick embryo. The Anatomical record 185:139-145.
4. Gomperts M., Garcia-Castro M., Wylie C. and Heasman J. (1994) Interactions between primordial germ cells play a role in their migration in mouse embryos. Development (Cambridge, England) 120:135-141.
5. Gordon J. W., Scangos G. A., Plotkin D. J., Barbosa J. A. and Ruddle F. H. (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Sciences of the United States of America 77:7380-7384.
6. Hamburger V. and Hamilton H. L. (1992) A series of normal stages in the development of the chick embryo. Developmental Dynamics 195:231-272.
7. Han J. Y. (2009) Germ cells and transgenesis in chickens. Comparative Immunology, Microbiology and Infectious Diseases 32:61-80.
8. Henderson J. K., Draper J. S., Baillie H. S., Fishel S., Thomson J. A., Moore H. and Andrews P. W. (2002) Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem cells (Dayton, Ohio) 20:329-337.
9. Houdebine L.-M. (2002) The methods to generate transgenic animals and to control transgene expression. Journal of Biotechnology 98:145-160.
10. Jung J. G., Kim D. K., Park T. S., Lee S. D., Lim J. M. and Han J. Y. (2005) Development of novel markers for the characterization of chicken primordial germ cells. Stem Cells 23:689-698.
11. Kim J. N., Kim M. A., Park T. S., Kim D. K., Park H. J., Ono T., Lim J. M. and Han J. Y. (2004) Enriched gonadal migration of donor-derived gonadal primordial germ cells by immunomagnetic cell sorting in birds. Mol Reprod Dev 68:81-87.
12. Kunwar P. S., Siekhaus D. E. and Lehmann R. (2006) In vivo migration: a germ cell perspective. Annual review of cell and developmental biology 22:237-265.
13. Kuramochi-Miyagawa S., Watanabe T., Gotoh K., Takamatsu K., Chuma S., Kojima-Kita K., Shiromoto Y., Asada N., Toyoda A., Fujiyama A., Totoki Y., Shibata T., Kimura T., Nakatsuji N., Noce T., Sasaki H. and Nakano T. (2010) MVH in piRNA processing and gene silencing of retrotransposons. Genes & development 24:887-892.
14. Love J., Gribbin C., Mather C. and Sang H. (1994) Transgenic birds by DNA microinjection. Bio/technology (Nature Publishing Company) 12:60-63.
15. Matsui Y., Zsebo K. and Hogan B. L. (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841-847.
16. Pesce M., Farrace M. G., Piacentini M., Dolci S. and De Felici M. (1993) Stem cell factor and leukemia inhibitory factor promote primordial germ cell survival by suppressing programmed cell death (apoptosis). Development (Cambridge, England) 118:1089-1094.
17. Petitte J. N., Clark M. E., Liu G., Verrinder Gibbins A. M. and Etches R. J. (1990) Production of somatic and germline chimeras in the chicken by transfer of early blastodermal cells. Development (Cambridge, England) 108:185-189.
18. Resnick J. L., Bixler L. S., Cheng L. and Donovan P. J. (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359:550-551.
19. Shamblott M. J., Axelman J., Wang S., Bugg E. M., Littlefield J. W., Donovan P. J., Blumenthal P. D., Huggins G. R. and Gearhart J. D. (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proceedings of the National Academy of Sciences 95:13726-13731.
20. Swift C. H. (1915) Origin of the definitive sex-cells in the female chick and their relation to the primordial germ-cells. American Journal of Anatomy 18:441-470.
21. Tsunekawa N., Naito M., Sakai Y., Nishida T. and Noce T. (2000) Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells. Development (Cambridge, England) 127:2741-2750.
22. van de Lavoir M., Mather-Love C., Leighton P., Diamond J. H., Heyer B. S., Roberts R., Zhu L., Winters-Digiacinto P., Kerchner A., Gessaro T., Swanberg S., Delany M. E. and Etches R. J. (2006) High-grade transgenic somatic chimeras from chicken embryonic stem cells. Mech Dev 123:31-41.
23. Yasuda Y., Tajima A., Fujimoto T. and Kuwana T. (1992) A method to obtain avian germ-line chimaeras using isolated primordial germ cells. Journal of reproduction and fertility 96:521-528.
CAPTCHA Image