Mina Jahandideh; Ebrahim Barzegari
Abstract
MicroRNAs are interesting as cancer diagnostic and prognostic biomarkers because of their unique tissue expression profiles, higher stability in the blood in comparison to mRNAs, and the possibility for reliable quantification. In the case of prostate cancer (PCa), it is currently ...
Read More
MicroRNAs are interesting as cancer diagnostic and prognostic biomarkers because of their unique tissue expression profiles, higher stability in the blood in comparison to mRNAs, and the possibility for reliable quantification. In the case of prostate cancer (PCa), it is currently emphasized to explore new biomarkers, particularly from microRNAs which are freely available in the bloodstream. In this study, the gene expression omnibus database (GEO), a repository of microarray data for PCa circulating extracellular vesicle-free microRNAs profiling, was analyzed for differentially expressed miRNAs (DE-miRs). Top 20 most differentially expressed miRs with significant (adjusted p-value < 0.01) high expression (fold change) levels were extracted by the simultaneous application of different filtering criteria. Then, microRNA-gene networks were constructed for the two sets of positively (n=20) or negatively (n=20) regulated miRNAs. Gene ontology annotations of the target gene sets were also extracted and analyzed. Results indicated that human miR-1587, miR-223-3p, miR-3125, and miR-642b-3p are highly significant DE-miRs in PCa. In addition, human miR-4459, miR-1273g, miR 642a-3p, and miR-642b-3p were identified as top-ranked hubs in the relevant miRNA-gene networks. FOXK1, PML, CD24, ATN1, BAZ2A, CDKN1A, NUFIP2, and HARNPU were identified as microRNA target genes with significant dysregulation. miR-4459, miR-1273g-3p, miR-3135b, miR-5001-5p, and miR-1587 were proposed as novel microRNAs with the potential to be utilized as diagnostic biomarkers of prostate cancer among circulating vesicle-free miRNAs.
Fereshteh Ashrafi; Mohammadreza Nassiri; Seyed Abdolrahim Rezaee; Ali Javadmanesh
Abstract
Bovine leukemia virus (BLV) is the etiologic agent of enzootic bovine leucosis (EBL) for the bovine host. In this study to examine gene expression changes in the manifestation of the EBL malignancy, four pooled RNA samples (three RNAs in each sample) were applied for transcriptome sequencing using RNA-seq ...
Read More
Bovine leukemia virus (BLV) is the etiologic agent of enzootic bovine leucosis (EBL) for the bovine host. In this study to examine gene expression changes in the manifestation of the EBL malignancy, four pooled RNA samples (three RNAs in each sample) were applied for transcriptome sequencing using RNA-seq technique. Differential expression analysis was done to compare the infected bovine group with the healthy bovine group using DESeq2 package in R software. Furthermore, functional gene ontology (GO) term and KEGG pathway enrichment analysis were stablished using the DAVID online database to identify involved GO terms and pathways in the host response to BLV infection. Our results suggested that 371 up- and 72 downregulated genes were involved in EBL with statistically significant threshold log2foldchange (LFC) = 1 and false discovery rate (FDR) <0.05 that were enriched in 74 biological processes and 20 KEGG pathways. Most of identified genes were associated with cancer, especially B-cell malignancies. The glycolysis/glycogenesis metabolic process is activated in B cells that confers growth and survival advantages in tumor and dysregulated CXCL10, IL17R, BTK, CDK4 and SYK genes known as valid biomarkers to increase the proliferation of malignant cell. The outcomes can provide a list of involved genes in the malignancy and help to screen candidate genes for cancer therapy in the future.