Narges ZadehRashki; Zahra Shahmohammadi; ZahraSadat Damrodi; Sohrab Boozarpour; Arezou Negahdari; Nazanin Mansour Moshtaghi; Mehdi Vakilinejad; Shaaban Ghalandarayeshi
Abstract
Cancer is a disorder of growth control and cell differentiation caused by the abnormal expression of multiple genes. Long non-coding RNAs (lncRNAs) are critical regulators of numerous biological processes, especially in the development of diseases. Abnormal expression of some lncRNAs causes disease, ...
Read More
Cancer is a disorder of growth control and cell differentiation caused by the abnormal expression of multiple genes. Long non-coding RNAs (lncRNAs) are critical regulators of numerous biological processes, especially in the development of diseases. Abnormal expression of some lncRNAs causes disease, especially cancer, and disease resistance. lncRNAs may act as oncogenes or tumor suppressors and can be used as diagnostic or prognostic markers, and may also have therapeutic potential in cancer treatment. Studies show that many lncRNAs have different effects on cell activity by regulating multiple downstream targets, such as signaling pathways that are signal transducers and activators of transcription 3 (STAT3). The STAT3 signaling pathway is one of the most critical pathways in developing various diseases, including cancer, which plays a vital role in cellular processes, disease onset and progression, and stem cell regeneration by regulating its target genes. STAT3 has been proven to be an anticancer target in various contexts. Types of genes can activate the STAT3 pathway in cancer. Many lncRNAs have been identified associated with the STAT3 pathway that is upstream or downstream. Oncogenic lncRNAs, including PVT1, HOTAIRM1, and MCM3AP-AS1, increase STAT3 expression, while tumor suppressor lncRNAs, such as TSLNC8, TPTEP1, and DILC decrease STAT3 expression. These lncRNAs can affect STAT3 signaling activity through numerous molecular mechanisms, including sponge of microRNAs, transcriptional activation/inhibition, and epigenetic alterations. Numerous studies show that targeting lncRNAs and molecules associated with the STAT3 signaling pathway are promising therapeutic strategies for various cancers. This review highlighted the mechanisms of the upstream lncRNAs of the STAT3 signaling pathway.
Roghaye Lorestani; Sohrab Boozarpour; Sakineh Alijanpour; Leila Ahangar
Abstract
Schizophrenia is an irritating mental disorder that affects around 1% of the world's population. The immune system contributes to the onset of the disease, particularly through production and secretion of some cytokines. In patients with schizophrenia, the balance of Th1 to Th2 ratio ...
Read More
Schizophrenia is an irritating mental disorder that affects around 1% of the world's population. The immune system contributes to the onset of the disease, particularly through production and secretion of some cytokines. In patients with schizophrenia, the balance of Th1 to Th2 ratio is often altered. In the present study, we investigated these changes by measuring the gene expression levels of IFN-γ and T-bet as Th1 indicators, as well as IL-4 and GATA-3 as representatives for Th2. Blood samples of schizophrenic patients (n=25) and healthy individuals (n=10) were obtained. Total RNA was extracted from leukocytes and cDNA synthesis was performed based on provided protocols. Real-time PCR technique was utilized for the assessment of gene expression levels. Results indicated a significant increase in the expression of IFN-γ and its transcription factor, T-bet, while IL-4 gene expression was reduced significantly. The expression level of GATA-3 gene revealed no meaningful changes. Altogether, results confirmed the relative shift of Th1 to Th2 status in the patient with schizophrenia and re-emphasize the importance of the inflammatory events in the incidence of the disease. Moreover, a new index was introduced based on the IFN-γ and T-bet genes expression, which can determine healthy condition with total accuracy of 79%.