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Abstract 
 

Epithelial ovarian cancer (EOC), as a challenging disease among women with poor prognosis and unclear 

molecular pathogenesis, each year is responsible for 140000 deaths globally. Recent progress in the field revealed 

the importance of proteins as key players of different biological events. Considering the complicated protein 

interactions, taking a deeper look at protein-protein interactions (PPIs) could be considered as a superior strategy to 

unravel complex mechanisms encountered with regulatory cell signaling pathways of ovarian cancer. Hence, PPI 

network analysis was performed on differentially expressed genes (DEGs) of ovarian cancer to discover hub genes 

which have the potential to be introduced as biomarkers with clinical utility. A PPI network with 600 DEGs was 

constructed. Network topology analysis determined UBC, FN1, SPP1, ACTB, GAPDH, JUN, and RPL13A, with the 

highest Degree (K) and betweenness centrality (BC), as shortcuts of the network. KEGG pathway analysis showed 

that these genes are commonly enriched in ribosome and ECM-receptor interaction pathways. These pivotal hub 

genes, mainly UBC, FN1, RPL13A, SPP1, and JUN have been reported previously as potential prognostic biomarkers 

of different types of cancer. However, further experimental molecular studies and computational processes are 

required to confirm the function and association of the identified hub genes with epithelial ovarian cancer prognosis. 

 
Keywords: Epithelial Ovarian Cancer, Differentially Expressed Gene Analysis, PPI Network Analysis, Pathway 

Enrichment Analysis 

 

 
 

Introduction1∗  

 

Epithelial ovarian cancer (EOC) as a challenging 

disease is diagnosed in nearly a quarter of a million 

women, and it is responsible for 140000 deaths 

worldwide per annum (Krzystyniak et al., 2016; 

Torre et al., 2018). Lack of early diagnosis and 

empirically-validated treatments were considered as 

the most common causes of mortality (Cho et al., 

2015). During the past decade, extensive research 

has been conducted to identify methods to predict 

and evaluate cancer progression (Li et al., 2015; 

Loghmani et al., 2014). Currently, the use of 

biomarkers such as serum cancer antigen 125 

(CA125) and human epididymis protein 4 (HE4) is 

very common among all methods used to diagnose, 

prognose, and management of ovarian cancer 

(Archana et al., 2013). However, the potential of 

                                                 
*
Corresponding author’s e-mail address: Shahla@nigeb.ac.ir 

these biomarkers for efficient prediction of outcome 

remains a significant challenge regardless of the 

different stages and complexity of the disease. Thus, 

the survival rate of EOC is still low, and there has 

not been any remarkable success in treatment, 

especially in patients with advanced epithelial 

ovarian cancer. 

Recently, some researchers proposed some target 

genes with specific coverage of a determined stage 

of the disease (Arnedos et al., 2019; Li et al., 2018; 

Zhang et al., 2019). In this regard, differentially 

expressed gene analysis (DEGA) (Anders et al., 

2010) as the most important application of RNA-Seq 

experiments, can be used to compare different genes 

expression levels between normal and cancerous 

cells. The results of such analyses reveal a list of 

differentially expressed genes (DEGs). Although, as 

most human cancers are very complex, and are 
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encountered with sets of genes and their complicated 

interactions, identification of the exact molecular 

mechanism is very difficult, especially, in human 

cases.  

Investigating protein-protein interactions (PPIs), 

with key roles in the biological function of the cells, 

is one of the beneficial methods to discover complex 

molecular mechanisms which are responsible for 

cell signaling and cell to cell communications 

(Huang et al., 2016). In a previous study, PPI 

networks were created based on the DEGs analysis 

to discover hub genes that have the potential to be 

introduced as biomarkers of esophageal squamous 

cell carcinoma (Wu et al., 2014). 

In the present study, RNA-seq data obtained from 

normal and cancerous cells of the ovarian tissue 

were compared statistically to discover DEGs. Then, 

Systems biology analyses such as gene ontology 

(GO) and pathways analysis (KEGG) (Ashburner et 

al., 2000; Kanehisa et al., 2000) were performed to 

provide insights into the key cellular processes 

which are responsible for normal/diseased condition. 

Furthermore, to explore new biomarkers, the PPI 

network was constructed by mapping all determined 

DEGs to the network data. Functional enrichment 

analysis was performed to assign functional 

categories to the subnetworks of genes.  

By introducing several hub genes, results of the 

present study may facilitate our vision regarding the 

molecular mechanisms involved in ovarian cancer 

pathogenesis. These experiments could be effective 

for defining proper treatment strategies in the 

clinical settings. However, further confirmatory 

studies are required for validation of data and 

announcement of novel panels of genes.  

 

Materials and Methods 
 

RNA sequencing data processing and differential 

gene expression analysis 

    Three separate Fastq data files for untreated 

ovarian tumor cell line SKOV-3, and normal cell line 

FT194 (De Cristofaro et al., 2016) were retrieved 

from the sequence read archive (SRA; 

http://www.ncbi.nlm.nih.gov/geo/). In order to 

provide clean data for downstream analyses, quality 

filtration was conducted to omit low quality 

sequence reads (more than 30% of reads) and 

adaptors (the first 15bp of Illumina reads) by the 

Trimmomatic program (Bolger et al., 2014). Then, 

using the HISAT2 alignment program (Kim et al., 

2015) all clean reads were mapped to the Homo 

sapiens (human) genome assembly GRCh37 (hg19). 

Counting of transcripts (mapping efficiencies 

(95%)) was performed with HTSeq (Anders et al., 

2014). Count data normalization was performed to 

determine statistically significant DEGs across two 

conditions. The DESeq2-Bioconductor package 

(version 1.6.3) was applied to improve stability and 

interpretability of estimates. Adjusted P value<0.01 

and a |log2FC|>2 were defined as the cut-off criteria. 

Biological significance of DEGs was explored 

through GO term enrichment analysis including 

biological processes (BP), cellular components 

(CC), and molecular functions (MF), and then 

KEGG pathway enrichment analysis was performed 

using enricheR-Bioconductor package (version 2.1).  

PPI Network construction  

The search tool for the retrieval of interacting 

genes (STRING, https://string-db.org/cgi/input.pl; 

version: 11.0), was used for obtaining direct 

(physical) and indirect (functional) human PPI 

networks (PPIN). The attribute that we applied to 

construct network was based on the highest 

confidence score of 0.07. Then, the constructed PPI 

network was analyzed using Cytoscape (version 

3.7.0). The topological analysis of the PPI network 

was performed with the Network Analyzer. 

Betweenness centrality (BC), closeness centrality 

(CC), and degree (K) were considered as 

fundamental parameters during our experiments to 

determine node properties.  

 

Identification of modules and functional 

annotation analysis 

The Molecular complex detection (MCODE) 

plugin was applied to visualize the significant gene 

modules in EOC with default parameters and the 

maximum depth of 100. Selection criteria for top 3 

significant modules were set as follows: MCODE 

scores ≥ 6, and number of nodes ≥ 10. Functional 

enrichment analysis for each module was performed 

using g:Profiler (URL: http://biit.cs.ut.ee/gprofiler/).  

 

Results  

 
Differential gene expression analysis results  

 Distribution of expression values across 

samples before and after normalization was 

evaluated to ensure that expression values were 

similar across normalized counts.  

Complete plot of raw counts using log2 

transformation (log2 (Non-normalized counts+1)) 

and then a plot of normalized counts using the 

DESeq2 are shown in Figure 1 (A) and (B), 

respectively. 

 
 

http://www.ncbi.nlm.nih.gov/geo
http://biit.cs.ut.ee/gprofiler/
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Figure 1. The gene count distributions. Box plots of non-normalized counts (log2 (counts+1)) per sample (A), and 

normalized counts (log2 (normalized counts)) per sample (B) are shown. The x-axis represents samples and the Y-axis 

represents log2 (counts +1). 

 

 

After DE analysis between ovarian tumor and 

normal groups, 1000 DEGs (padj <0.01) were 

obtained with 232 upregulated genes (padj <0.01, 

log2 FC> 2), and 324 downregulated genes (padj 

<0.01, log2 FC <-2) (Table S1).  

 

Functional analysis of DEGs 

Gene ontology (GO) and pathway analysis of 

differentially expressed genes 

To investigate activated and suppressed DEGs in 

different functional categories, GO and KEGG 

pathway analysis using enrichR were performed. 

Based on the results from these experiments genes 

were classified into different functional categories 

according to the GO term for biological processes 

(BP) (Figure. S1), molecular functions (MF) (Figure. 

S2) and cellular components (CC) (Figure. S3). 

Totally 572 out of 1000 profiled DEGs assigned to 

930 GO terms (padj <0.01). The top 1 significantly 

upregulated and downregulated GO categories are 

shown in Table. 1. 

 

Overall, 156 upregulated genes (padj<0.01, log2 FC 

>2), and 82 downregulated genes (padj<0.01, log2 

FC <-2) were mapped to 283 KEGG pathways. The 

top 14 enriched pathways are shown in Figure. 2. 

The upregulated genes were highly clustered in 

signaling pathways including glycolysis, pyruvate 

metabolism, tryptophan metabolism, and fatty acid 

degradation; while, the most downregulated genes 

were highly clustered into ribosome, salmonella 

infection, focal adhesion, and apoptosis. 

 

PPI Network construction 

After DEGA, the significant result of String analyses 

was based on confidence score (0.007), the average 

degree of nodes (5.11), and average local clustering 

coefficient (0.406), and a PPI network with 797 

interactions between 600 DEGs was performed 

(Figure. 3). In order to detect the key parameters of 

the network, interaction pairs of the PPI network 

were visualized by Network-Analyzer Cytoscape 

plugin (cut off values: BC> 0.02, and K> 10((Table. 

2). 

 
Identification of modules and functional annotation 

analysis 

The module analysis of PPI network using 

MCODE resulted in 13 modules. According to the 

Table S2 and Figure 4, four significant modules were 

identified with MCODE (score ≥ 5 and nodes ≥ 6). 

Among which UBC (Ubiquitin C) as the main hub 

was clustered in module 3. Ribosomal Protein Small 

(RPS) subunit genes and Ribosomal Protein Large 

(RPL) genes were clustered in module 1, and other 

hub genes including Secreted Phosphoprotein 1 

(SPP1), calumenin (CALU), complement C3 (C3), 

and Fibronectin 1 (FN1) were clustered in module 2. 
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Table 1. The top 1 enriched gene ontology term of up- and down regulated genes involved in biological processes 

(BP), cellular components (CC), and molecular functions (MF) 
 

Gene Ontology (GO) terms and 

ID 
Source Adjusted p-value Gene symbol 

Up-regulated genes 

drug transport (GO:0015893) 
BP 0.0197973 SLC47A2; SLC19A1 

solute:sodium symporter 

activity (GO:0015370) 
MF 0.06705 SLC5A9; SLC25A22 

intrinsic component of the 

cytoplasmic side of the plasma 

membrane (GO:0031235) 

CC 0.0109396 MIEN1; SPTB 

Down-regulated genes 

SRP-dependent cotranslational 

protein targeting to membrane 

(GO:0006614) 

BP 1.78E-10 
RPL41;RPL3;RPL32;RPL13A;RPS25;RPS19;RPL36;

RPL14;RPL13;RPL37;RPL26;RPL29;RPS24;RPL19 

RNA binding (GO:0003723) 

MF 1.56E-13 

RBM25;RPL3;RPL32;HMGB2;PSIP1;YBX1;IFIT3;R

PS19;RPL36;HIST1H1D;KIF1C;RPL37;HMGN2;HIS

T1H1B;HIST1H1C;CAST;DDX58;ACTN1;DNTTIP2
;RPL13A;PPHLN1;GNL2;GTF2F1;SMC1A;RANGA

P1;EEF1D;MYH9;LUC7L3;RPL26;SREK1;RPL29;E

ZR;PLEC;DHX8;SRRT;DDX21;PDCD11;TERT;PES
1;UBC;RPL14;RPL13;FLNA;FLNB;SRSF11;RPL19;

RBM39;PRPF38B;RPL41;JUN;KRR1;PRRC2C;DEK;

EEF2;RPS25;H1F0;MYBBP1A;ACO1;VIM;CALR;R
PS24;WRAP53 

cytosolic large ribosomal 

subunit (GO:0022625) 
    CC 5.33E-10 

RPL41;RPL3;RPL32;RPL36;RPL14;RPL13A;RPL13;
RPL37;RPL26;RPL29;RPL19 

 

 

 
Figure 2. Pathway enrichment analysis of up- and downregulated genes in ovarian cancer samples in comparison to 

normal cases. The x-axis represents pathways, and KEGG IDs and the Y-axis represents combined score. As shown, 

the most downregulated genes are enriched in the ribosome pathway and the most upregulated genes are enriched in 

the Glycolysis/Gluconeogenesis pathway. 
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Figure 3. Overview of the PPI network constructed using Cytoscape. The network includes 547 edges (interactions) 

among 63 nodes. The nodes with dark brown, light brown, and green colors represent key genes in the network. Among 

key genes, nodes with dark brown color represent the super hubs with the highest BC and K. 

Table 2. The main topological parameters including, Betweenness centrality (BC), closeness centrality (CC), and 

Degree (K) of the PPI network. The hub genes in the network based on cut off values of BC > 0.02 and degree >10 

were demonstrated with light gray. 

Gene K BC CC 

UBC 27 0.39930027 0.40957447 

FN1 23 0.22956964 0.35240275 

ACTB 17 0.21966548 0.39896373 

GAPDH 13 0.19844427 0.40633245 

JUN 12 0.12427487 0.36842105 

RPL13A 23 0.1023342 0.38118812 

CXCL8 11 0.09960491 0.34684685 

RPL19 21 0.05464691 0.36150235 

RPL32 20 0.04926171 0.35981308 

C3 13 0.02902674 0.28308824 

PLEC 16 0.02815066 0.30985915 

PES1 17 0.02631353 0.29222011 
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Figure 4. Subnetworks identified from the PPI network (Module 1, Module 2, Module 3, and Module 4, respectively). 

The light green nodes in each of the clusters represent hub genes which were extracted from the PPI network by 

Network-Analyzer plugin. The white nodes represent genes which are involved in modules. The lines represent node’s 

interactions. 

Functional annotation analysis was applied to the 

hub genes of the PPI Network and each module 

separately. The top three functional annotation 

categories (BB, MF, CC, and KEGG) for module 1 

are shown in Table. 3. Pathway analysis mainly 

involved KEGG pathway revealed that genes were 

commonly enriched in the ribosome pathway. The 

constituent structures of the ribosome, nuclear-

transcribed mRNA catabolic process, nonsense-

mediated mRNA decay, and cytosolic ribosome 

were the most related terms to MF, BP, and CC of 

the module 1 with the most enriched gene, 

respectively. 

Table 3. The top three functional annotation categories (BB, MF, CC, and KEGG) for module 1 with the most enriched 

gene. 

Sour

ce 

 GO 

/Pathway 

ID 

Term 

name 

Adjust

ed p-

value 

Intersections 

MF GO:00037

35 

structural 

constituent 

of 

ribosome 

4.98E-

19 

RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,RPL13A,RPL29,RPL1

3 

MF GO:00051

98 

RNA 

binding 

4.26E-

13 

RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,PLEC,RPL13A,RPL2

9,RPL13 

MF GO:00037

23 

structural 

molecule 

activity 

7.63E-

13 

RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,RPS25,PLEC,RPL13
A,RPL29,UPF2,RPL13,EEF2 

BP GO:00001

84 

nuclear-

transcribed 

mRNA 

catabolic 

process, 

nonsense-

mediated 

mRNA 

decay 

2.49E-

25 

RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,RPS25,RPL13A,RPL2
9,UPF2,RPL13 
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BP GO:00066

14 

SRP-

dependent 

cotranslati

onal 

protein 

targeting 

to the 

membrane 

5.23E-

24 

RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,RPS25,RPL13A,RPL2

9,RPL13 

BP GO:00066

13 

cotranslati

onal 

protein 

targeting 

to the 

membrane 

1.06E-

23 

RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,RPS25,RPL13A,RPL2

9,RPL13 

CC GO:00226

26 

cytosolic 

ribosome 

3.23E-

15 

NACA,RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,RPS25,RPL13
A,RPL29,RPL13,EEF2 

CC GO:00058

40 

Ribosome 9.54E-

14 

RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,RPS25,RPL13A,RPL2

9,RPL13 

CC GO:00443

91 

ribosomal 

subunit 

7.20E-

13 

RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,RPS25,RPL13A,RPL2

9,RPL13,EEF2 

KEG

G 

KEGG:03

010 

Ribosome 2.85E-

19 

RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,RPS25,RPL13A,RPL2
9,RPL13 

 

 

 

Discussion 

 
Epithelial ovarian cancer (EOC) has the highest 

mortality rate among different types of women's 

cancers due to the poor diagnosis (Hao et al., 2010). 

Studies have shown that in order to achieve effective 

methods for early diagnosis and prevention of 

metastasis, it is important to study the molecular 

mechanisms of the carcinogenesis. 

The purpose of the current study is the analysis of 

existing RNA-seq data and their comparative 

interpretation between normal and diseased 

conditions to investigate novel DEGs involved in 

PPI Networks and regulatory pathways of EOC. 

Many pivotal genes and pathways which are 

associated with ovarian cancer were identified in the 

present study. Totally, among 1000 DEGs (232 

upregulated and 324 downregulated genes), 

migration and invasion enhancer 1 (MIEN1) and 

AP001610.5 were the most up- and down-regulated 

genes, respectively. MIEN1 is an intrinsic 

component of the cytoplasmic side of the plasma 

membrane, which plays a pivotal role in the 

regulation of apoptosis. It was previously proposed 

by other studies as an important target to be 

considered in molecular cancer therapy procedures 

(Evans et al., 2006). The Ribosome pathway and 

Glycolysis/Gluconeogenesis were also identified as 

the most significantly enriched pathways in KEGG 

analysis. ALDH3A2 (Marcato et al, 2011), a 

member of the aldehyde dehydrogenase (ALDH) 

gene family (Warburg, 1956), is the most significant 

gene in Glycolysis/Gluconeogenesis pathway. 

Whereas, high glycolysis in tumor cells correlates 

with the degree of tumor malignancy, an argument 

to justify the significance of the glycolysis pathway 

in this study is the potential need of chronic cell 

proliferation to provide energy in order to fuel rapid 

cell growth and division (Board et al., 1992). In the 

present study, ribosomal protein (Rps) genes and 

large ribosomal proteins (RPL) including RPL41, 

RPL3, RPL32, RPL13A, RPS25, RPS19, RPL14 

and RPL36 were the most significant downregulated 

DEGs. These genes related to the signal-recognition 

particle (SRP)-dependent cotranslational protein-

membrane targeting, RNA binding, and cytosolic 

large ribosomal subunit.  

After analyzing the topology of the PPI network 

totally 28 nodes with BC> 0.02, and K> 10 were 

extracted as hub genes and among them some nodes 

such as UBC, FN1, ACTB, GAPDH, JUN, and 

RPL13A with high K, BC, and CC were shortlisted. 

These hub genes were downregulated in EOC 

samples in comparison to adjacent normal samples. 

Clustering was performed to investigate the 

relationship between hub genes with other genes of 

the network using MCODE and previously 

identified 13 modules. Furthermore, functional 

annotation was performed on 4 modules to 

determine the top affected functions in EOC. 

Functional annotation of main hubs clustered in 

these modules showed that Ubiquitin C (UBC), with 

the highest degree of connectivity, was clustered in 

module 3 along with other genes, including IFI44L, 

IFI27, DDX58, IFIT3, PARP9, MX1, and ISG15. 

This module mainly enriched with protein tag, 

defense response, and RIG-I-like receptor signaling 

pathways.  

The ubiquitin is encoded by the ubiquitin C (UBC) 

and ubiquitin B (UBB) in humans. These two genes 

are essential for maintenance of cellular ubiquitin 
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levels under stress conditions (Castello et al., 2017). 

Moreover, they play key roles as tumor suppressors 

in a variety of cancers, DNA damage repair and 

regulation of protein turnover through the ubiquitin-

proteasome system (UPS) (Kimura et al., 2016). 

Recent studies indicated that the transcriptional 

repression of UBB is a cancer-subtype-specific 

event which occurs in approximately 30% of high-

grade serous ovarian cancer (HGSOC) cases. 

Silencing of UBB reduces cellular ubiquitin levels 

which is resulted in the overexpression of UBC to 

compensate the lost function of UBB. These changes 

may have prognostic value (Dasgupta et al., 2009).  

Fibronectin 1 (FN1) was clustered with the Secreted 

Phosphoprotein 1 (SPP1), Transmembrane Protein 

132A (TMEM132A), Stanniocalcin 2 (STC2), 

cysteine-rich angiogenic inducer 61 (CYR61), 

Wolfram syndrome type 1 (WFS1), Insulin-like 

Growth Factor Binding Protein 4 (IGFBP4), and 

Enamelin (ENAM) in the module 2 which is 

enriched with extracellular matrix structural 

constituent. The FN1 has numerous functional 

properties and is involved in cell adhesion, growth, 

migration, and differentiation procedures. Previous 

studies reported morphological alterations in tumors 

and tumor-derived cell lines that have been 

attributed to the decrease fibronectin expression, 

increased fibronectin degradation, and/or decreased 

expression of fibronectin-binding receptors, such as 

α5β1 integrin (Zhuo et al., 2016). The main 

functions of module 1 were correlated with RPs and 

RPL genes and structural constituent of ribosomes 

and nuclear-transcribed mRNA catabolic process.  

Secreted phosphoprotein 1 (SPP1), also known as 

Osteopontin (OPN), as an upregulated gene in the 

present study, was found to be overexpressed in 

numerous tumors, including lung, colon, breast, and 

ovarian cancers (Wang et al., 2014; Zeng et al., 

2018). Many recent studies demonstrated that the 

existence of SPP1 in cancerous tissue samples and 

sera of women with ovarian cancer promotes ovarian 

cancer progression via Integrin β1/FAK/AKT 

signaling pathway (Shevde et al., 2014). The SPP1 

along with TMEM132A, CALU, C3, STC2, 

CYR61, WFS1, IGFBP4, FN1, and ENAM were 

correlated with the most upregulated gene-enriched 

signaling pathways including post-translational 

protein modifications, signaling receptor bindings, 

and ECM-receptor interactions in the module 1. To 

data, among all mentioned pathways, the ECM-

receptor interactions pathway has been highlighted 

in cancer studies and also the interaction of this 

pathway with DEGs has been introduced as a 

diagnostic marker (Bao et al., 2019). The main 

cancer-related activity of this pathway is related to 

adhesion, migration, differentiation, proliferation, 

and apoptosis. Therefore, Increasing the expression 

of SPP1 as an inflammatory, fibrotic, and 

carcinogenic gene has been well justified in the 

ECM-receptor interactions pathway.  
 

Conclusion 

 
The current study demonstrates that, the hub 

genes derived from the PPI network, including UBC, 

FN1, ACTB, SPP1, JUN, and RPL13A tend to be 

present in different cancer-related pathways and Go 

functions. After following the function of these 

genes in causing cancer we suggested that these 

genes may be have potential to become biomarker 

panel related to the EOC. Yet, more molecular 

biology experiments, computational method 

analysis on big data is needed to support this 

suggestion. 
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Supplementary Materials: 

Supplementary Figures 

 

 

 

Figure S1. Comparative gene ontology enrichment analysis of biological processes (BP) for up- and down-regulated 

genes of normal and cancerous ovarian samples. As shown, the most down-regulated genes are enriched in the (SRP)-

dependent cotranslational protein-membrane targeting and the most up- regulated genes are enriched in the amino 

metabolic process. 

 

 

Figure S2. Comparative gene ontology enrichment analysis of molecular functions (MF) for up- and down-regulated 

genes of normal and cancerous ovarian samples. As shown, the most downregulated genes are enriched in the AT DNA 

binding and the most upregulated genes are enriched in the Solute: proton antiporter activity. 
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Figure S3. Comparative gene ontology enrichment analysis of cellular components (CC) for up- and down- regulated 

genes of normal and cancerous ovarian samples. As shown, the most downregulated genes are enriched in cytosolic 

large ribosomal subunit and the most upregulated genes are enriched in the intrinsic component of the cytoplasmic side 

of the plasma membrane. 

Supplementary Table 

Table S1. The list of upregulated and downregulated genes (DEGs). This table is supplied as an excel file. 
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Abstract 

 
MicroRNAs are interesting as cancer diagnostic and prognostic biomarkers because of their unique tissue 

expression profiles, higher stability in the blood in comparison to mRNAs, and the possibility for reliable 

quantification. In the case of prostate cancer (PCa), it is currently emphasized to explore new biomarkers, particularly 

from microRNAs which are freely available in the bloodstream. In this study, the gene expression omnibus database 

(GEO), a repository of microarray data for PCa circulating extracellular vesicle-free microRNAs profiling, was 

analyzed for differentially expressed miRNAs (DE-miRs). Top 20 most differentially expressed miRs with significant 

(adjusted p-value < 0.01) high expression (fold change) levels were extracted by the simultaneous application of 

different filtering criteria. Then, microRNA-gene networks were constructed for the two sets of positively (n=20) or 

negatively (n=20) regulated miRNAs. Gene ontology annotations of the target gene sets were also extracted and 

analyzed. Results indicated that human miR-1587, miR-223-3p, miR-3125, and miR-642b-3p are highly significant 

DE-miRs in PCa. In addition, human miR-4459, miR-1273g, miR 642a-3p, and miR-642b-3p were identified as top-

ranked hubs in the relevant miRNA-gene networks. FOXK1, PML, CD24, ATN1, BAZ2A, CDKN1A, NUFIP2, and 

HARNPU were identified as microRNA target genes with significant dysregulation. miR-4459, miR-1273g-3p, miR-

3135b, miR-5001-5p, and miR-1587 were proposed as novel microRNAs with the potential to be utilized as 

diagnostic biomarkers of prostate cancer among circulating vesicle-free miRNAs. 

 
Keywords: Prostate Cancer, Diagnosis, Biomarker, Vesicle-free microRNAs, Gene ontology 

 
 

Introduction1∗  
 

Prostate cancer (PCa), as one of the most 

prevalent cancer types in males, is estimated to affect 

more than one million cases annually in the Western 

world (Bray et al., 2018). Benign forms of PCa can 

be cured through surgery or radio-therapy with a 5-

year survival rate in nearly 100% of cases. However, 

metastatic cases are not generally treatable (5-year 

survival rate of less than 40%)(Hamdy et al., 2016; 

Helgstrand et al., 2018). For patients with advanced 

stage of the disease, over-treatment is used for long-

term patient survival. Accordingly, it is critical to 

diagnose PCa in a timely and accurate manner.  

Transrectal biopsy is the common diagnostic 

approach of PCa, usually performed following the 

observation of increased levels of prostate specific 

antigen (PSA) in the serum, and suspicious results 

from the low-sensitivity method of digital rectal 

examination. Although, this ultrasound-guided 

biopsy technique is erroneous (with false-positive 

rate 25%)(Bolla and van Poppel, 2012). Multi-

parametric magnetic resonance imaging outperforms 

                                                 
*
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the standard transrectal biopsy method, but it is 

accompanied by false negatives and has limited 

availability (Boesen et al., 2018; Elkjaer et al., 

2018). Considering these drawbacks, finding less 

invasive and more accurate strategies for prostate 

cancer diagnosis is imperative. 

Liquid biopsy samples from blood and urine are 

convenient sources of possible nucleic acid markers 

associated with cancer initiation or progression. 

Circulating non-coding RNAs, specifically 

microRNAs (miRNAs, miRs), play a significant role 

in distinguishing various types of tumors, including 

PCa (Laursen et al., 2019; Lin and Gregory, 2015; 

Movahedpour et al., 2019; Schmidt et al., 2018; 

Urabe et al., 2019). 

During recent years, miRNAs have brought about a 

micro-revolution in cancer research and diagnosis 

due to their contributions as oncogenes or tumor-

suppressor genes (Ferracin et al., 2010). There are 

two forms of circulating cell-free microRNAs within 

the blood: I) vesicle-enclosed miRNAs (Huang et al., 

2013; Valadi et al., 2007), and II) vesicle-free 

miRNAs (RNA binding proteins) (Wang et al., 
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2010). As vesicle-free microRNAs are more 

available for extraction and performing downstream 

experiments, they could be considered as more 

appropriate candidates for development of novel 

detection methods based on the application of miR 

biomarkers.  

     Many studies focus on the applications of miRs 

as biomarkers in PCa detection. Even though, such 

data have been used fewer for understanding the 

basic functions of these regulatory elements in 

normal and cancerous tissues of the prostate. In the 

current study, we profile regulatory networks and 

functional targets of vesicle-free circulating 

microRNAs which are significantly dysregulated in 

PCa patients. By exploiting the non-coding RNA 

profiling data, this study aims to unveil the potentials 

of the new types of microRNAs to be utilized as 

biomarkers for PCa occurrence or prognosis.  

 

Materials and Methods 

 
Microarray data retrieval and analysis  

     The miRNA expression profiles of PCa patients 

vs. healthy individuals were obtained from the 

national center for biotechnology information 

(NCBI) gene expression omnibus (GEO) with 

accession number GSE113234 (Mello-Grand et al., 

2019). These data were obtained by microarrays 

from 60 PCa patients and 27 healthy subjects. The 

microRNAs were hybridized on arrays with probes 

designed for a set of 2006 human miRs. During 

comparative studies (PCa vs. healthy subjects) using 

the last version of R (version 3.4.1), we retained 

differentially expressed miRNAs with fold-changes 

greater than 2.0. p-values were adjusted through 

Benjamini & Hochberg method. Shortlisted 

circulating microRNAs were then utilized in 

combination with the results from PSA test to 

develop an accurate and non-invasive prostate 

cancer detection strategy. 

 

Identification of differentially expressed 

microRNAs 

     To identify the significantly up-regulated 

microRNAs in patients with PCa in comparison to 

healthy subjects, miRs with the highest fold change 

values were extracted from outputs. The same 

procedure was performed for the lowest values of 

logFC to identify the significantly down-regulated 

microRNAs. Different search filters including the 

existence of statistically significant differences and 

cut-off values for gene expression fold changes were 

applied simultaneously to identify top 20 

differentially expressed miRs. These DE miRs with 

the highest or lowest fold changes were selected for 

further analysis. The p values for these sets of 

miRNAs were less than 0.01 for both positively and 

negatively regulated microRNAs.  

 

Target identification  

     MirWalk-database was used to identify the target 

genes of each DE-miRNA. For each miRNA, a set 

of the 100 most significantly related genes were 

determined. Thereby, totally 2000 genes were 

extracted as the targets of up-regulated and down-

regulated miRs. 

 

Functional enrichment analysis 

     Genes targeted by the most significantly up-

regulated microRNAs in PCa were used as primary 

input to the Database for annotation, visualization 

and integrated discovery (DAVID, v6.8). This 

database provides clustering and annotations to the 

input genes list. Similar procedure was performed 

for the gene targets of down-regulated microRNAs. 

These analyses were designed to find enriched 

biological themes/ gene ontology (GO) terms related 

to the biological processes (BPs) encountered with 

the functions of DE-miRNA target genes. Top 20 of 

the significant GO terms were considered as 

representatives of the functional annotations for DE-

miRNAs with key roles in prostate cancer.  

A Visual Basic Script (VBScript) code was created 

in the Microsoft Excel program to identify the genes 

which are most frequently present in the collective 

sets of genes associated with the top BPs. It could be 

considered that these genes are involved in the 

pathogenesis or manifestation of PCa.  

 

Network analyses  

     NetworkAnalyst 3.0 platform was used to extract 

the complete network of genes which are frequent 

among the miRs targets (Zhou et al., 2019). 

Moreover, miRNet 2.0 visualization web-tool was 

utilized to extract and analyze the miRNA-target 

gene interaction networks (Chang et al., 2020). The 

human microRNA disease database (HMDD, v3.2) 

was screened for evidences confirmed associations 

between miRs and PCa (Huang et al., 2019). Also, 

to find driver genes of prostate cancer, DisGeNet 

(version 7.0), a gene-disease association dataset, was 

administered. In order to visualized the functional 

interconnections of the target genes in addition to 

their significant GO terms, the GOnet server tool 

was applied using the threshold value p <1.94e-5 as 

the relation significance (Pomaznoy et al., 2018).  

 

Results 

 
Gene expression value distributions  
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     Cross-platform comparison of gene expression 

value distributions was performed to determine 

whether the expression profiles are comparable 

between PCa and healthy individuals in the 

corresponding GEO profile entries. As illustrated in 

Figure 1, both samples demonstrated symmetric 

distribution of gene expressions. This pattern 

indicates that the data are median-centered across 

samples, and cross-group comparison could be 

applied for further screenings.  

 

 

 

 

MicroRNAs with differential expression levels  
     Table 1 shows a list of the top 20 miRNAs with 

significant positively or negatively altered gene 

expression levels (p < 0.01). Based on this analysis, 

hsa-miR-1587, hsa-miR-223-3p, hsa-miR-1915-3p, 

hsa-miR-6125, and hsa-miR-1273g-3p are the most 

significant differentially expressed miRNAs with 

higher expression levels in patients with prostate 

cancer vs. healthy controls. On the other hand, hsa-

miR-3125, hsa-miR-642b-3p, hsa-miR-4505, hsa-

miR-498, and hsa-miR-874 are top 5 down-regulated 

miRNAs. 

 

 

 
Figure 1. Gene expression value distributions are presented as a grouped boxplot for samples from healthy and PCa 

patients. GSM identifiers of the samples are shown on the horizontal axis, while, expression values are shown on the 

vertical axis. Data analysis was performed using built-in distribution analysis tool of the Gene Expression Omnibus 

database. Abbreviations: GSM, Gene Expression Omnibus Sample entry. 
 

 
Table 1. Vesicle-free microRNAs differentially expressed in PCa vs. normal subjects with highest significance levels 

(p < 0.01). 
Up-regulated miRNAs  Down-regulated miRNAs 

ID Fold Change p value  ID Fold Change p value 

hsa-miR-1587 25.79288964 6.1e-11  hsa-miR-3125 0.002133045 1.8e-10 

hsa-miR-223-3p 22.32543862 6.4e-05  hsa-miR-642b-3p 0.003146299 7.3e-13 

hsa-miR-1915-3p 20.29551145 7.0e-13  hsa-miR-4505 0.005873541 1.0e-10 

hsa-miR-6125 19.50742743 6.1e-11  hsa-miR-498 0.007903146 1.0e-11 

hsa-miR-1273g-3p 12.49108029 2.0e-10  hsa-miR-874 0.009242724 3.7e-12 

hsa-miR-3135b 10.76713107 2.2e-06  hsa-miR-4714-3p 0.011893235 1.6e-09 

hsa-miR-6068 9.931160484 1.7e-08  hsa-miR-3177-5p 0.013058702 3.7e-12 

hsa-miR-5001-5p 9.693932693 1.0e-08  hsa-miR-486-5p 0.035139858 3.5e-10 

hsa-miR-4787-5p 9.57855506 1.7e-08  hsa-miR-4314 0.04792918 9.3e-11 

hsa-miR-4687-3p 9.208735521 7.0e-10  hsa-miR-4516 0.050084115 7.3e-13 

hsa-miR-4459 7.51622894 2.3e-03  hsa-miR-3141 0.056298912 4.8e-06 

hsa-miR-6089 7.130171895 1.4e-04  hsa-miR-631 0.079323159 3.2e-10 

hsa-miR-371b-5p 7.064802086 7.2e-07  hsa-miR-345-3p 0.0815455 3.4e-07 

hsa-miR-4507 6.798294905 8.1e-08  hsa-miR-6088 0.090844785 5.0e-09 

hsa-miR-23a-3p 6.768617929 5.6e-05  hsa-miR-4520b-3p 0.103252363 3.2e-10 

hsa-miR-6724-5p 6.56447502 1.3e-08  hsa-miR-642a-3p 0.110994127 2.7e-08 
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hsa-miR-4466 6.290714855 2.4e-07  hsa-miR-4304 0.113318287 3.3e-11 

hsa-miR-638 5.81701254 2.4e-07  hsa-miR-1233-1-5p 0.115027055 2.8e-11 

hsa-miR-15b-5p 5.093308711 2.9e-03  hsa-miR-4802-3p 0.120586864 6.1e-09 

hsa-let-7f-5p 4.710857854 1.9e-03  hsa-miR-302d-5p 0.137088177 4.3e-09 
 

 

 

MiRNAs target identification  

     The number of target genes which were identified 

for up-regulated and down-regulated DE-miRNAs 

in patients with prostate cancer vs. healthy 

individuals were 1326 and 1901, respectively. To 

verify that these genes are functionally interrelated, 

gene-gene interaction networks were extracted for 

PCa-associated genes (Figure 2). These networks 

indicated hub genes among the genes encode for 

positively or negatively regulated vesicle-free 

microRNAs in PCa. Full sets of dysregulated target 

genes were screened to detect functional profile of 

PCa DE-miRNAs. MiRNA-gene interaction 

networks were separately obtained for up- and 

down-regulated DE-miRNAs (Figure 3). Network 

analysis revealed the most contributing microRNAs 

and genes which are responsible for development of 

prostate cancer. Table 2 presents these network 

items with their relevant topological parameters.  

 

 
Figure 2. Interaction networks constructed for (a) positively, and (b) negatively regulated miRNA target genes in PCa 

samples. Data was obtained from MirWalk online tool. 
 

 
Figure 3. MiRNA-gene interaction networks which were built for (a) up-regulated, and (b) down-regulated 

differentially expressed microRNAs in prostate cancer samples are shown. miRNet 2.0 was utilized for extracting and 

analyzing the miRNA-gene networks. 
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Table 2. MicroRNAs which are involved in the regulatory network of PCa development in addition to their target 

genes encode for these miRs are shown in the table. 
Node item Degree Betweenness Node item Degree Betweenness 

Up-regulated miRs Down-regulated miRs 

hsa-let-7f-5p 3 
8.62873 

hsa-miR-498 6 
143.32320 

hsa-miR-23a-3p 3 
10.17321 

hsa-miR-631 2 
1.15202 

hsa-miR-223-3p 3 
3.53887 

hsa-miR-302d-5p 3 
12.16220 

hsa-miR-15b-5p 5 
27.67949 

hsa-miR-3125 2 
2.68535 

hsa-miR-638 1 
0 

hsa-miR-4304 1 
0 

hsa-miR-1915-3p 2 
2.88528 

hsa-miR-4314 3 
4.13384 

hsa-miR-4459 9 
82.29159 

hsa-miR-642b-3p 7 
76.55934 

hsa-miR-3135b 7 
44.17389 

hsa-miR-4505 2 
2.69919 

hsa-miR-4466 4 
15.77690 

hsa-miR-4516 5 
54.41083 

hsa-miR-1587 5 
21.67443 

hsa-miR-3177-5p 1 
0 

hsa-miR-4687-3p 1 
0 

hsa-miR-4714-3p 3 
20.77789 

hsa-miR-371b-5p 3 
4.10794 

hsa-miR-4802-3p 3 
28.51971 

hsa-miR-4787-5p 1 
0 

hsa-miR-642a-3p 7 
76.55934 

hsa-miR-5001-5p 6 
39.84926 

hsa-miR-345-3p 1 
0 

hsa-miR-1273g-3p 8 
55.44037 

hsa-miR-874-3p 3 
25.92176 

hsa-miR-6089 2 
1.58383 

hsa-miR-4520-2-3p 2 
4.81212 

hsa-miR-6125 1 
0 

hsa-miR-1233-5p 3 
2.28321 

hsa-miR-6724-5p 3 
7.19620 

hsa-miR-874-5p 1 
0 

Target genes Target genes 

SOD2 5 
46.16845 

SNRPD1 4 
70.67985 

SLC12A7 5 
22.01802 

BTG2 4 
28.80109 

ZNF460 5 
25.13426 

BACE2 4 
48.91486 

TERF2 5 
21.99524 

SIGLEC9 4 
66.69920 

POM121C 5 
40.97833 

CRCP 4 
22.87670 

SLC7A5 5 
23.57412 

ZNF689 4 
29.71133 

FOXK1 7 
71.76947 

GRK2 4 
15.79189 

FUT11 5 
21.23700 

GATA6 4 
25.11072 

POU2F3 5 
16.91934 

HMGB1 4 
37.30794 

GDE1 5 
25.12142 

BAZ2A 5 
68.81256 

LYRM4 5 
36.66783 

CDKN1A 5 
28.53590 

TAF8 5 
27.21987 

HNRNPU 4 
15.30749 

TFDP2 5 
21.19667 

NUFIP2 5 
72.45046 

 

 

Functional enrichment of target genes 

     We carried out functional annotation analysis 

based on the GO of BP components to investigate 

the roles of microRNAs target genes. Results 

confirmed that miRs with significantly changed 

expression levels between disease and healthy 

conditions could alter some key biological processes 

and thus, promote manifestation of the disease.  

Among various biological processes, target genes of 

up-regulated miRNAs were mostly enriched in the 

following pathways (p < 0.01): enzyme linked 

receptor protein signaling pathway, regulation of 

apoptosis, negative regulation of cytoskeleton 

organization, transmembrane receptor protein 

tyrosine kinase signaling pathway, regulation of 

cellular component size, negative regulation of 

protein complex disassembly, and transforming 

growth factor beta receptor signaling pathway. The 

most important prostate cancer related GO 

biological processes were considered as the ones 

with the most number of involved genes (Figure 4a). 

On the other hand, target genes of down-regulated 



Journal of Cell and Molecular Research (2020) 12 (1), 10-21 
  

15 

http://jcmr.um.ac.ir 

miRNAs were shown to take part in negative 

regulation of megakaryocyte differentiation, 

telomere capping and organization, beta-catenin-

TCF complex assembly, nucleosome assembly, 

chromatin silencing at rDNA, epigenetic regulation 

of gene expression, transcription initiation, double-

strand break repair via nonhomologous end joining, 

protein hetero tetramerization, cellular protein 

metabolic process, gene silencing by RNA, 

semaphorin-plexin signaling pathway, histone H3 

deacetylation, positive regulation of 

phosphatidylinositol 3-kinase signaling, and 

regulation of cell shape (p < 0.01 for all). The 

relative contributions of significant GO terms in 

negative regulation of PCa-associated miRs is 

shown in Figure 4b. 

The most frequently represented genes which were 

determined based on the total count of the genes in 

the processes  are: Promyelocytic leukemia (PML), 

Forkhead box K1 (FOXK1), Superoxide dismutase 

2 (SOD2), Solute carrier family 12 member 7 

(SLC12A7), POU class 2 homeobox 3 (POU2F3), 

Zinc finger protein 460 (ZNF460), Telomeric repeat 

binding factor 2 (TERF2), NADH: ubiquinone 

oxidoreductase subunit A13 (NDUFA13), Cyclin 

dependent kinase 5 (CDK5), Mitogen-activated 

protein kinase kinase kinase 1 (MAP3K1), and 

Maelstrom spermatogenic transposon silencer 

(MAEL). Both highly represented genes and 

annotated genes of the miRNA-gene interaction 

network were used to draw a GO term-gene map for 

up-regulated microRNAs (Figure 5a).  

In case of down-regulated genes, total counts of 

target genes in the processes revealed Histone H4 

family members, High mobility group box 1 

(HMGB1), Cell division cycle 5 like (CDC5L), 

Death domain associated protein (DAXX), 

Intercellular adhesion molecule 1 (ICAM1), Small 

nuclear ribonucleoprotein D1 polypeptide 

(SNRPD1), Zinc finger protein 689 (ZNF689), 

Heterogeneous nuclear ribonucleoprotein U 

(HNRNPU), Cyclin dependent kinase inhibitor 1A 

(CDKN1A), BTG anti-proliferation factor 2 

(BTG2), Bromodomain adjacent to zinc finger 

domain 2A (BAZ2A), Platelet derived growth factor 

receptor alpha (PDGFRA), Peroxisome proliferator 

activated receptor delta (PPARD), Mitogen-

activated protein kinase 3 (MAPK3), Tumor protein 

p53 binding protein 1 (TP53BP1), and zinc finger 

protein 3 (ZNF3) as the mostly represented genes. 

Both highly represented genes and annotated genes 

of the miRNA-gene interaction network were used 

to draw a GO term-gene map for down-regulated 

microRNAs (Figure 5b). 

 

 

 
Figure 4. Pie charts indicated an overall view from biological processes which are associated with predicted miRs 

target genes, for (a) up-regulated, and (b) down-regulated microRNAs, respectively. Each sector size is proportional 

to the number of genes which are involved in the GO biological process (p < 0.01). 
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Figure 5. Networks of significant gene targets of (a) up-regulated, and (b) down-regulated differentially expressed 

miRNAs. The intensity of GO term node colors indicates the significance of enrichment (p < 0.0001). Genes were 

colored due to their expression levels in the prostate gland tissue; blue represents the lowest level of gene expression, 

while, genes with the highest level of expression are shown with red color. To visualize the functional interconnection 

of target genes and their significant GO terms, the GOnet server tool was applied. In the server, p value threshold for 

relation significance was set 1.94e-5. 
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Discussion 
      

To date, numerous microRNAs have been 

identified in human prostate tissue, serum, plasma, 

and urine which are associated with localized and 

metastatic prostate cancers. Nevertheless, further 

experiments are required to evaluate the potential of 

miRNAs as biomarkers for the early diagnosis of 

PCa, particularly among men with increased risk for 

prostate cancer (McDonald et al., 2018). In the 

present study, we investigated whether blood 

circulating microRNAs demonstrate differential 

expressions according to the status of prostate 

cancer. As we were endeavored to find proper miRs 

with diagnostic value, vesicle-free microRNAs were 

selected due to their beneficial applicable properties 

in comparison to the vesicle-enclosed miRNAs. This 

kind of studies not only will help us to distinguish 

individuals with urgent need for performing prostate 

biopsy, but also may elucidate factors which are 

involved in the pathogenesis of the prostate cancer. 

Accordingly, the up-regulation of miR-375 and 

down-regulation of miR-146a-5p as extracellular 

vesicle-incorporated miRs with highly established 

roles in the pathogenesis of prostate cancer, were not 

the matter of our analyses (Endzelins et al., 2017). 

This approach will help us to avoid increased 

variability and more conveniently translate our 

findings to the clinical practices (Abramovic et al., 

2020; Fabris et al., 2016; Fendler et al., 2016; 

Fredsoe et al., 2020).  

Although we applied GEO series from the previous 

study performed by Mello-Grand et al.  (2019), we 

only included PCa and healthy samples in the 

comparisons and omitted benign prostatic 

hyperplasia (BPH) samples from the analysis. In 

addition, we were stricter in the selection of the 

filters, as we considered p values <0.01 as the 

statistically significant differences. Moreover, 

despite the original research we did not assign any 

cut-off value during our analysis due to the below 

mentioned reasons: (1) we aimed to find miRs 

biomarkers that could discriminate PCa cases from 

healthy controls; (2) we aimed to find the 

responsible genes and their key interactions which 

are involved in the PCa pathogenesis using the 

corresponding GEO series accession. As an 

additional comparison, Mello-Grand et al. (2019) 

did not consider the target genes profiles for the 

miRs identified in their research. Also, they did not 

perform network and functional enrichment 

analyses.  

The relationship between identified miRs and their 

target genes with prostate cancer has sufficient 

evidences from the literature. Significant up-

regulation of the central miRNAs such as miR-223-

3p (Bahtiyar et al., 2018; Cao et al., 2015; Feng et 

al., 2018; Jiang et al., 2005; Kurozumi et al., 2016; 

Liu et al., 2018; Mi et al., 2007; Triozzi et al., 2012; 

Volinia et al., 2006; Wei et al., 2014), miR-23a-3p 

(Aghaee-Bakhtiari et al., 2015; Cai et al., 2015; 

Jiang et al., 2005; Mi et al., 2007; Porkka et al., 2007; 

Wen et al., 2015), miR-15b-5p (Chen et al., 2018; 

Musumeci et al., 2011), miR-let-7f-5p (Ge et al., 

2020; Jiang et al., 2005; Mello-Grand et al., 2019; 

Porkka et al., 2007), and miR-371 (HMDD v.3.2) in 

PCa tumors has been confirmed previously.     

Furthermore, miR-642b (HMDD v.3.2), miR-498 

(Bendoraite et al., 2010; Porkka et al., 2007), miR-

486 (Navon et al., 2009; Song et al., 2015), miR-

4516 (HMDD v.3.2), miR-631 (HMDD v.3.2), miR-

345 (Chen et al., 2016; Jiang et al., 2005; Porkka et 

al., 2007; Sayed et al., 2007; Tinay et al., 2018; 

Wang et al., 2014), miR-642a (HMDD v.3.2), and 

miR-302d (HMDD v.3.2) have been shown to be 

significantly down-regulated in PCa samples. These 

cell-free miRNAs could be considered as biomarkers 

for early detection of PCa (Zhang et al., 2014). 

Combined analysis of the expression patterns and 

network topologies for identified DE-miRNAs in the 

present study allowed the identification of the miRs 

with high diagnostic potentials. Interestingly such 

potential markers can be found only among 

positively regulated miRs, including miR-4459, 

miR-1273g-3p, miR-3135b, miR-5001-5p, and miR-

1587.  

The miRNA-gene interaction networks constructed 

for DE-miRNAs confirmed most of the target genes 

which were predicted for these DE-microRNAs. 

Functional annotation of target genes indicated that 

the up-regulation of miRs in PCa is responsible for 

suppressed apoptotic process, enhanced nucleobase-

containing metabolic process, and enhanced gene 

expressions which imply to augmented cell 

proliferation. The most important genes were 

FOXK1 (Chen et al., 2017), PML (Gurrieri et al., 

2004), CD24 (Rouhrazi et al., 2018), ATN1 

(Maugham et al., 2017), BCALF1, ENG (Liu et al., 

2002), and SOD2 (Burri et al., 2008). In contrast, 

down-regulation of the identified miRs resulted in 

the negative regulation of gene expressions and 

macromolecule biosynthesis, implying that they are 

tumor suppressive microRNAs. The most important 

genes were BAZ2A (Gu et al., 2015), CDKN1A 

(Mitchell and El-Deiry, 1999), NUFIP2, HARNPU, 

HMGB1 (Wang et al., 2018), SPDEF (Findlay et al., 

2008), BTG2 (Lim et al., 2008), and HIST1H4A 

(Yao et al., 2014).  

Overall, we propose miR-4459, miR-1273g-3p, 

miR-3135b, miR-5001-5p, and miR-1587 as novel 

file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_39
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_16
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_1
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_1
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_17
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_18
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_22
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_3
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_10
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_19
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_19
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_31
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_32
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_36
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_41
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_53
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_56
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_60
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_2
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_9
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_31
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_41
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_47
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_61
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_14
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_44
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_23
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_23
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_31
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_40
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_47
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_4
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_47
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_45
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_51
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_13
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_31
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_47
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_47
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_49
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_52
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_59
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_63
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_12
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_26
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_26
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_48
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_38
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_37
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_37
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_8
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_25
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_42
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_57
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_21
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_21
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_34
file:///I:/JCMR/87155-Revised%20Manuscript.docx%23_ENREF_62


Journal of Cell and Molecular Research (2020) 12 (1), 10-21 
  

18 

http://jcmr.um.ac.ir 

microRNAs with great potential to be utilized as 

diagnostic biomarkers for distinguishing prostate 

cancer patients from healthy individuals. Although, 

these in silico findings should be verified through 

experimental studies.  
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Abstract  
 

Previous studies have found several distinct alleles at both levels of transcriptional activity and 

protein-DNA binding manners in breast cancer patients vs. healthy individuals through multi-step 

experimental approaches. This study presents a computational-based model to investigate the regulatory 

potential and functional properties of disease-related non-coding single nucleotide polymorphisms (SNPs) 

variants through several online in silico tools in the Iranian population. The association between the risk 

of breast cancer and its putative single nucleotide polymorphisms in the Iranian population was 

investigated through SNPedia database and genome-wide association studies (GWAS). Furthermore, a 

meta-analysis was performed by Comprehensive Meta-Analysis (CMA) software. Functional analyses 

were carried out through LDlink, HaploReg, and RegulomeDB. The impact of each single nucleotide 

polymorphism on gene expression profiles and transcription factor binding sites were predicted by the 

RegulomeDB. "5", "6", and "1d" scores were assigned to rs3746444, rs1062577, and rs1049174 by this 

scoring system, respectively. RegulomeDB scores of rs3746444-MYH7B/MIR499A and rs1062577-ESR1 

suggested that they are not putative functional single nucleotide polymorphisms; and may not associate 

with significant eQTL signals. The “1d” score for rs1049174-RP11-277P12.20 confirmed an association 

with the expression of the target gene. Proxy variants rs6088678 and rs2617160 have been identified using 

LDlink in non-coding segments. They were in strong linkage disequilibrium (LD) with single nucleotide 

polymorphisms rs3746444 and rs1049174, respectively. Also, non-coding variants rs6088678-TRPC4AP 

and rs2617160- RP11-277P12.20 with high-ranked scores showed the strongest related-expression. This 

work provides a rapid and direct in silico-based approach for the identification of functional genetic 

variants in the breast cancer. These analyses were conducted to evaluate the association of intended SNPs 

with the regulatory elements of histones, DNases, motif changes, and selected eQTL signals. It can be 

extended to some other complex single nucleotide polymorphism-related diseases.  

 
Keywords: Epigenetics, Functional single nucleotide polymorphisms, Genome-Wide Association Studies, Linkage 

Disequilibrium, RegulomeDB scoring system. 

 
 

Introduction1∗  

 

Single Nucleotide Polymorphisms (SNPs) 

represent the most common markers of the genome 

diversity among individuals (Coetzee et al., 2012). 

The overwhelming majority of significantly 

associated genetic variants identified through 

GWAS were drop down outside of the coding area. 

Hence, it is difficult to understand how specific SNP 

                                                      
*Corresponding author’s e-mail address: m.bitaraf@areeo.ac.ir 

increases disease susceptibility (Meng et al., 2018). 

Single nucleotide polymorphisms have a crucial role 

in the prediction of the risk of various complicated 

diseases including cancer ( Seyedmir et al., 2017). 

Cis-regulatory regions (non-coding DNA regions) 

comprise distal elements such as promoters, 

enhancers, and insulators, which regulate 

transcriptional activities and complex spatial and 

temporal gene expressions following the binding of 
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transcription factors ( Bauer-Mehren et al., 2009). 

In addition, the majority of epigenetic 

changes may be reversible or preventable. So, the 

restoration of epigenetic changes could be applied as 

a proper strategy for cancer treatment or prevention 

( Coetzee et al., 2012). There are highly advanced 

web-based tools with the capacity for the annotation 

of a specific SNP to a target gene. Also, it is possible 

to measure the causal risk among numerous non-

coding loci before performing time‐consuming 

validation experiments. Such experiments will 

enable us to accurately predict the likelihood of 

particular cancer risk for individuals or communities 

( Coetzee et al., 2012). These types of studies are 

based on two hypotheses: I) alterations in the 

regulatory areas are major determinants of gene 

expression modifications. II) motifs in regulatory 

regions exhibit a location preference (e.g. at the 

center of H3K27ac, H3K4me1 or DNase peak ( 

Meng et al., 2018).                 It has been observed 

that the chromatin status of enhancers is determined 

by highly specific histone modification patterns 

which are strongly linked to cell-type-specific gene 

expression programs on a global scale.( Heintzman 

et al., 2009)  Along with H3K4me1, a general signal 

for enhancers, H3K27ac enrichment is also 

dedicated to the identification of active enhancers. 

Sequences with high H3K4me1 enrichment, and low 

H3K27ac are considered as ready-to-activate 

enhancers and are associated with low gene 

expression levels ( Rhie et al., 2013). Hence, in the 

present study, in line with these kind of experiments, 

a comprehensive in silico study was conducted based 

on the application of computational-based methods 

including RegulomeDB, HaploReg, and LDlink.  

Encyclopedia of DNA Elements (ENCODE, from 

ChIP-seq experiments), and Roadmap Epigenomics 

(from methods such as ChromHMM) were utilized 

as data resources (Edwards et al., 2013). We selected 

breast cancer as the phenotype of choice among 

others during genome-wide association studies 

(GWAS). A list of three breast cancer risk-

associated SNPs was obtained from the GWAS 

Catalog and SNPedia. Our purpose was to determine 

the functional value of rs3746444, rs1062577, and 

rs1049174 SNPs which were obtained through wet-

lab experiments in the Iranian population.  

Indeed, we performed pairwise comparisons 

with functional proxy variants suggested by the 

LDlink application. LDlink 

(analysistools.nci.nih.gov) is a web-based 

application for exploring population-specific 

haplotype structure and linking correlated alleles of 

possible functional variants (Machiela et al., 2015). 

Due to the importance of linkage disequilibrium 

(LD) structures in the indigenous populations, 

LDlink was utilized for finding two proxy variants 

to be compared with query variants in the Iranian 

population. We found coding proxy variants with 

high RegulomeDB scores which do not have any 

functional effect on regulatory regions. On the other 

side, a non-coding proxy variant with low 

RegulomDB score was selected. RegulomeDB 

variant classification scheme is fully described by 

Boyle et al. (Boyle et al., 2012). 

HaploReg v4.1 is another web-based tool for 

exploring the annotations and producing 

mechanistic hypotheses of the impact of noncoding 

variants on the clinical phenotypes and normal 

variations ( Fayez et al., 2018). 

 

Materials and Methods 
 

Selection of SNPs 

     In the present study, SNPs associated with breast 

cancer risk in the Iranian population were identified 

through the SNPedia (www.snpedia.com) and 

GWAS Catalog (www.ebi.ac.uk›gwas). These 

detected SNPs include rs3746444 (Kabirizadehet al., 

2015), ( Jiang et al., 2015), ( Zou et al., 2012), (Mu 

et al., 2017), (Wang et al., 2012), ( Wang et al., 

2012), rs1062577( Dehghan et al., 2017), (Chen et 

al., 2016), and rs1049174 (Ghobadzadeh et al., 

2013). Different parameters including odds ratios 

(OD), confidence interval (CI), number of samples, 

author’s name, and host countries for these SNPs 

were extracted from relevant literature to conduct a 

comprehensive meta-analysis. The best and most 

effective SNPs were selected for downstream 

procedures. 

 

In-silico studies 

     LDlink (www.ldlink.nci.nih.gov), HaploReg 

(www.pubs.broadinstitute.org/mammals/haploreg/h

aploreg.pbp) and RegulomeDB 

(http://www.regulomedb.org) web tools and 

databases were applied to determine the functional 

value of desired polymorphisms. Figure 1 is 

outline of our processing pipeline. 
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Figure 1. The pipeline consists of various key points including methods of SNP collection (SNPedia and GWAS 

Catalog), comprehensive meta-analysis (CMA), investigating the patterns of linkage disequilibrium across a variety of 

ancestral populations (LDlink), and developing the mechanistic hypothesis of the impact of non-coding variants on the 

clinical phenotypes (RegulomeDB and HaploReg). At the final step, we endeavored to confirm whether these SNPs 

are located in the regulatory segments and have functional impact on the gene expression patterns (Putative Functional 

SNP). 

SNPedia: wiki-based bioinformatics web site that serves as a database of single nucleotide polymorphisms (SNPs). 

NHGRI-EBI GWAS Catalog: publicly available resource of Genome Wide Association Studies (GWAS) and their 

results. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated 

alleles of possible functional variants. HaploReg: a tool for exploring annotations of the noncoding genome at variants 

on haplotype blocks, such as candidate regulatory SNPs at disease associated loci. RegulomeDB: a database that 

annotates SNPs with known and predicted regulatory elements in the intergenic regions of the H. sapiens genome. 

Known and predicted regulatory DNA elements include regions of DNase hypersensitivity, binding sites of 

transcription factors, and promoter regions that have been biochemically characterized to regulation transcription. 

Sources of these data include public datasets from GEO, the ENCODE project, and published literature. Query SNP: 

variant RS number - RS number for query variant. RS number must match a bi-allelic variant. Table of proxy variants: 

by default, the ten variants with the highest R2 values and closest distance to the query variant are displayed. External 

links lead to the variant RS number in dbSNP, coordinates in the UCSC Genome Browser, and regulatory information 

(if any) in RegulomeDB. 

The LDlink web tool was used to detect proxy SNPs 

with strong LD (≥ 0.8) for rs3746444, rs1062577, 

and rs1049174. Proxy SNPs with these properties 

were selected for further analysis: I) coding SNPs 

with high RegulomeDB scores (4-6) and the least 

evidences for binding to regulatory proteins and 

participation in the gene expression regulation. II) 

non-coding SNPs with low RegulomeDB score (1a-

1f) and the most evidences for binding to regulatory 

proteins and participation in the gene expression 

regulation. In addition, LD hap option of the LDlink 

was applied to evaluate haplotype frequencies 

between input SNPs and proxy SNPs. 

Histone modifications in human tissues relevant to 

the breast cancer, such as breast myoepithelial 

primary cells (MEPs) and breast variant human 

mammary epithelial cells (vHMECs) (Fayez et al., 

2018) were investigated by the HaploReg v4.1 tool. 

HaploReg was used to explore the annotations of the 

non-coding genome at variants on haplotype blocks, 

such as candidate regulatory SNPs at disease-related 

loci ( Hamdi et al., 2018). The impact of genetic 

changes on different tissues and biological systems 

was revealed using HaploReg, RegulomeDB, and 

the genotype-tissue expression (GTEx) portal (Ward 

et al., 2011). 

 

Results 
  

Identification of single nucleotide polymorphisms  

     The meta-analysis results using CMA software 

are shown in the Table 1. The level of rs3746444 

effect on the breast cancer predicted as "low". The 

interactive plot for rs3746444 represents the high 

density of SNPs with high LD around this variant 

(Figure 2). 
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Using LDlink web tool it was confirmed that two 

proxy SNPs (rs3746435 and rs6088678) with strong 

LD 0.87 with query SNP rs3746444, are associated 

with the breast cancer pathogenesis (Table 2). 

RegulomeDB score "5" was obtained for SNP 

rs3746435, located in the coding region. Meanwhile, 

based on this scoring system, low score of “1f” was 

measured for rs6088678 non-coding variant, 

implying a higher level of functional properties 

(Table 2).  

It was confirmed by the application of HaploReg that 

rs3746444 induces histone modification 

H3K4me1_Enh in the breast myoepithelial primary 

cells and is located in the DNase I hypersensitive 

region of the breast variant of human mammary 

epithelial cells. It shows that motif changes may 

allow the DNase I to identify the available chromatin 

and cuts DNA at its respective region (Table 3). 

Although, proxy SNP rs3746435 (missense) with 

score "5", did not results in any histone 

modifications in the examined breast cancer cell 

lines (Table 3). It was also shown based on the 

results from HaploReg tool that proxy SNP 

rs6088678 caused the histone modification 

H3K9ac_ Pro. It is located within the promoter 

region and transcription start sites (TSS) and was 

effective in the regulation of TRPC4AP expression 

(Table 3). Query SNPs or SNPs previously identified 

as breast cancer associated ones in the Iranian 

population are marked in bold. 

 

 

 

 
Figure 2. The interactive plot obtained for rs3746444(blue circle with RegulomeDB score=5) by the application of 

LDlink web tool. The complete and high-resolution chart could be viewed through the given link. 

(https://ldlink.nci.nih.gov/?var=rs3746444&pop=CHB%2BJPT%2BCHS%2BCDX%2BKHV%2BGIH%2BPJL%2B

BEB%2BSTU%2BITU&r2_d=r2&window=500000&tab=ldproxy). Interactive plot: interactive plot of query 

variant(rs3746444) and all bi-allelic dbSNP variants plus or minus 500 kilobases (Kb) of the query variant(rs3746444). 

X axis is the chromosomal coordinates and the Y axis is the pairwise R2 value with the query variant as well as the 
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combined recombination rate from HapMap. Each point represents a proxy variant and is colored based on function, 

sized based on minor allele frequency, and labeled based on regulatory potential (regulatory potential number of 

rs3746444=5). Hovering over the point will display detailed information on the query and proxy variants. Reference 

population(s)((SAS) South Asian and (EAS) East Asian): selected from the drop-down menu. At least one 1000 

Genomes Project sub-population is required, but more than one may be selected. R2/D' toggle: select if desired output 

is based on estimated R2 or D'. 

 

Table 1.  Results from meta-analysis of association studies for rs3746444. 

Reference study 
Odds 

ratios 

Lower 

limit 

Upper 

limit 

z 

value 

p 

value 

Wang, Y., Yang, B. and Ren, X. (2012) Hsa-miR-499 polymorphism 

(rs3746444) and cancer risk: a meta-analysis of 17 case–control studies. 

Gene 509(2): 267-272. 

1.230 1.059 1.429 2.710 0.007 

Mu, K., Wu, Z. Z., Yu, J. P., Guo, W., Wu, N., Wei, L. J. and Liu, J. T. 

(2017) Meta-analysis of the association between three microRNA 

polymorphisms and breast cancer susceptibility. Oncotarget 8(40): 68809. 

1.170 1.025 1.336 2.319 0.020 

Wang, L., Qian, S., Zhi, H., Zhang, Y., Wang, B. and Lu, Z. (2012) The 

association between hsa-miR-499 T> C polymorphism and cancer risk: a 

meta-analysis. Gene 508(1): 9-14. 

1.160 0.995 1.353 1.892 0.058 

Zou, P., Zhao, L., Xu, H., Chen, P., Gu, A., Liu, N. and Lu, A. (2012) Hsa-

mir-499 rs3746444 polymorphism and cancer risk: a meta-analysis. Journal 

of biomedical research 26(4): 253-259. 

1.100 1.004 1.205 2.049 0.040 

Jiang, S. G., Chen, L., Tang, J. H., Zhao, J. H. and Zhong, S. L. (2015) 

Lack of association between Hsa-Mir-499 rs3746444 polymorphism and 

cancer risk: meta-analysis findings. Asian Pacific Journal of Cancer 

Prevention 16(1):339-344. 

1.180 1.035 1.346 2.466 0.014 

Kabirizadeh, S., Azadeh, M., Mirhosseini, M., Ghaedi, K. and Tanha, H. 

M. (2016) The SNP rs3746444 within mir-499a is associated with breast 

cancer risk in Iranian population. Journal of Cellular Immunotherapy 2(2): 

95-97. 

1.922 1.064 3.471 2.167 0.030 

 1.157 1.094 1.223 5.149 0.000 
 

 

Data obtained by the LDlink revealed that 

rs3746444, which is located in a non-coding 

segment, indicated a RegulomeDB score "5" (Table 

2). It seems that rs3746444 does not exhibit any 

significant biological activity such as alterations in 

the transcription factors binding capacity and gene 

regulatory effects in the Iranian population. 

 

 

Table 2.  Details of putative regulatory functions of query SNPs and their associated proxy SNPs. 
 

cVariant 

LD 

(r²) 

 

LD 

(D') 

ASN 

freq 

Enhancer 

histone 

marks 

DNase 

dbSNP 

func 

annot 

GEN 

CODE 

genes 

RegulomeDB 

score 

Predicted 

function 

rs3746444 1 1 0.17 
IPSC, GI, 

MUS 

BRST, 

BRN, 

LIV 

Intronic 
MYH7B & 

MIR499A 
5 

TF binding or 

DNase peak 

rs3746435 0.87 1.0 0.12 
SKIN, 

MUS 

SKIN, 

PLCNT 
Missense MYH7B 5 

TF binding or 

DNase peak 

rs6088678 0.87 1.0 0.12 8 tissues - Intronic TRPC4AP 1f 

eQTL+TF 

binding / 

DNase peak 

rs1062577 1 1 0.27 - - 3'-UTR ESR1 6 Motif hit 

rs1049174 1 1 0.60 - 8 tissues 3'-UTR 
RP11-

277P12.20 
1d 

eQTL+TF 

binding+any 

motif+ DNase 

peak 

rs2617160 0.88 0.9 0.59 10 tissues 5 tissues Intronic 
RP11-

277P12.20 
1f 

eQTL+TF 

binding / 

DNase peak 

A comparison of several factors between query and proxy variants with high LDs has been performed in the Asian 

population. 

ASN freq: allele abundance in Asian population. SNP functional annotation: the functional area where mentioned SNP 

is located. GENCODE genes: the gene region in which SNP is located. RegulomeDB score: Regulome DB is a database 
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that scores SNPs functionality based upon experimental data. It is necessary to mention that in all tables Query SNPs 

are displayed in bold. 
 

Table 3.  Regulatory chromatin status from DNase and histone ChIP-Seq (Roadmap Epigenomics Consortium, 2015). 
 

variant Group Description H3K4me1 H3K4me3 H3K27ac H3K9ac DNase 

rs3746444 Epithelial 

Breast 

Myoepithelial 

Primary Cells 

H3K4me1_Enh - - - - 

rs3746444 Epithelial 

Breast variant 

Human Mammary 

Epithelial Cells 

(vHMEC) 

- - - - DNase 

rs3746435 Epithelial 

Breast 

Myoepithelial 

Primary Cells 

- - - - - 

rs3746435 Epithelial vHMEC - - - - - 

rs6088678 Epithelial 

Breast 

Myoepithelial 

Primary Cells 

- - - H3K9ac_Pro - 

rs1062577 Epithelial vHMEC H3K4me1_Enh - - - - 

rs1049174 Epithelial 

Breast 

Myoepithelial 

Primary Cells 

H3K4me1_Enh - - - - 

rs1049174 Epithelial vHMEC H3K4me1_Enh - - - - 

rs2617160 Epithelial 

Breast 

Myoepithelial 

Primary Cells 

H3K4me1_Enh - - - - 

rs2617160 Epithelial vHMEC H3K4me1_Enh - - - DNase 

Query SNPs have been compared with proxy SNPs in terms of cellular and histological position. Histone modifications 

that each one creates in the target cells has been investigated. 

Open chromatin: DNase1 hypersensitivity. Histone modifications: H3K4me1, H3K4me3, H3K9ac, H3K27ac. It is 

necessary to mention that in all tables Query SNPs are displayed in bold. 

 

 

Increased frequency of haplotype AGC 

The LD hap analysis 

(http://analysistools.nci.nih.gov/LDlink/tab=ldhap) 

showed increased frequency (79%) of AGC 

haplotype among three SNPs including rs3746444, 

rs3746435, and rs6088678. Results indicated that 

when the query SNP is adenine, the proxy allele for 

rs3746435 and rs6088678 will be G and C, 

respectively. There was a very strong LD among 

these three SNPs (87%). Also, the abundance of the 

AGC haplotype was high. It was revealed that allele 

A in query SNP rs3746444 is more likely to be 

associated with allele G; while if the query allele is 

G, it is likely that the proxy allele would be C (Figure 

3).  

 
Figure 3. Haplotype Analysis of query SNP rs3746444 with two proxy SNP rs3746435 and rs6088678. 
Results obtained from haplotype study of SNPs using LDlink web-based tool indicate that when the query SNP is 

adenine, the proxy allele for rs3746435 and rs6088678 will be G and C, respectively. There is a very strong LD 

among these three SNPs (87%).     

(http://analysistools.nci.nih.gov/LDlink/tab=ldhap) 
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Association of SNPs with transcriptional levels of 

the target genes 

Polymorphism rs3746444-

MYH7B/MIR499A induces a poor transcriptional 

level in the breast MEPs and vHMECs, which in 

turn, will be resulted in the formation of a weak 

polycomb complex and reduced regulatory effects of 

the target gene. On the other side, rs3746435 induces 

a strong transcription in the examined cell lines. The 

proxy SNP rs6088678-TRPC4AP showed a strong 

transcription in addition to the score “1f” in both cell 

lines (Table 4). As demonstrated in Fig. 4, the non-

coding proxy SNP rs6088678 with low score “1f”, 

indicated the highest expression level in the breast 

tissue. Its value was equal to 40-60 Reads Per 

kilobase Million (RPKM) (Figure 4). 

 

 

 
Figure 4. TRPC4AP gene expression from (GTEx) project for rs6088678. 

The non-coding proxy SNP rs6088678 with low score “1f”, indicates the highest expression level in the breast tissue 

(red arrow). Its value is equal to 40-60 Reads Per kilobase Million (RPKM). 

 

Table 4. Genome browser, chromatin state and accessibility. 

Method SNP Location 
Chromatin 

State 

Tissue 

Group 
Tissue 

ChromHMM rs3746444 chr20:33575200..33578600 
Weak 

transcription 
Epithelial 

Breast 

Myoepitheli

al Primary 

Cells 

ChromHMM rs3746444 chr20:33574000..33583000 

Weak 

Repressed 

PolyComb 

Epithelial 

Breast 

variant 

Human 

Mammary 

Epithelial 

Cells 

(vHMEC) 

ChromHMM rs3746435 chr20:33583600..33645600 
Strong 

transcription 
Epithelial 

Breast 

Myoepitheli

al Primary 

Cells 

ChromHMM rs3746435 chr20:33583000..33590400 Quiescent/Low Epithelial vHMEC 

ChromHMM rs6088678 chr20:33583600..33645600 
Strong 

transcription 
Epithelial 

Breast 

Myoepitheli

al Primary 

Cells 

ChromHMM rs6088678 chr20:33603600..33608000 
Strong 

transcription 
Epithelial vHMEC 
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ChromHMM rs1062577 
chr6:152398400..15243160

0 
Quiescent/Low Epithelial 

Breast 

Myoepitheli

al Primary 

Cells 

ChromHMM rs1062577 
chr6:152423600..15242520

0 

Weak 

transcription 
Epithelial vHMEC 

ChromHMM rs1049174 chr12:10524400..10528200 
Weak 

transcription 
Epithelial 

Breast 

Myoepitheli

al Primary 

Cells 

ChromHMM rs1049174 chr12:10525000..10525600 Enhancers Epithelial vHMEC 

ChromHMM rs2617160 chr12:10544600..10549000 Enhancers Epithelial 

Breast 

Myoepitheli

al Primary 

Cells 

 

ChromHMM 

 

 

rs2617160 

 

chr12:10544800..10546400 

 

Enhancers 

 

Epithelial 

 

vHMEC 

ChromHMM (Hidden Markov Model) is applied to annotate the non-coding genome using epigenomic information 

between one or multiple cell types. Using RegulomeDB web-based tool, the transcription level of Query SNPs and 

proxy SNPs in different tissues and cell types has been determined. It is necessary to mention that in all tables Query 

SNPs are displayed in bold. 

 

The NIH genotype-tissue expression (GTEx) project 

was created to establish sample and data resources 

for studies aimed to unravel the relationships 

between genetic variations and gene expression 

levels in multiple human tissues. This track shows 

median gene expression levels in 51 tissues and 2 

cell lines, based on the RNA-seq data from the GTEx 

midpoint milestone data release (V6, October 2015). 

This release is formed based on the data from 8555 

tissue samples obtained from 570 adult post-mortem 

individuals. 

All the regulatory features which were seen in tables 

were obtained from ENCODE and NIH Roadmap 

Epigenomics data through the UCSC Genome 

Browser. 

 

SNP rs1062577 

     Meta-analyses were not possible for query SNP 

rs1062577-ESR1 due to the limited number of 

studies which carried out on rs1062577 in the Asia. 

The interactive plot in LDlink tool revealed that 

there is no SNP with strong LD (≥ 0.8) around 

rs1062577. RegulomeDB score of "6" revealed no 

remarkable effect on the gene expression levels 

(Table 2). However, it shows the target gene (ESR1) 

expression of rs1062577 in the breast cancer tissues. 

There are overwhelming data on the expression of 

ESR1, up to about 50 RPKM. Indeed, this 

polymorphism induces H3K4me1_Enh histone 

modification in vHMECs (Table 3). However, there 

was little evidences for rs1062577 to be a functional 

noncoding SNP. 
 

SNP rs1049174 versus rs2617160 

  The interactive plot from LDlink tool, 

indicated low density of SNPs with strong LD 

around rs1049174. The non-coding proxy SNP 

rs2617160, located in the intronic region with score 

"1d", was selected for further analysis (Table 2). 

There was no coding SNP with strong LD for 

rs1049174. Both of the query SNP rs1049174, and 

proxy SNP rs2617160 caused H3K4me1_Enh 

histone modification in the investigated cell lines 

and were associated with the breast cancer tissue. 

In contrast, proxy SNP rs2617160, thorough 

the induction of motif changes, produces open 

chromatin regions in vHMECs. Hence, DNase I can 

cut DNA in its respective region (Table 3). Both 

rs1049174, and 2617160 which were submerged in 

the RegulomeDB tool in addition to the proxy SNP 

rs2617160 are located in RP11-277P12.20 enhancer 

sites of the examined breast cancer cell lines. 

rs1049174 caused a poor transcriptional level in the 

breast MEPs and is specifically located in the 

enhancer of the vHMECs (Table 4). 

 

Discussion 
 

     Previous studies demonstrated that most of the 

GWAS variants fall in non-coding (nc) regions. The 

identification of the functions of these ncSNPs 

remains as a major challenge. The importance of 

understanding the functional contributions of 

specific risk variants to disease pathogenesis is 

widely accepted ( Rhie et al., 2013). The biological 

effects of the most already studied SNPs in the 

Iranian population were not strong. In the present 

study through the application of a set of in silico 
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approaches, functional analyses were performed for 

previously known breast cancer risk associated 

SNPs in the Iranian population. The HaploReg 

database was established as a computer simulation 

tool by Ward and Kellis (Ward et al., 2011) to 

provide an intersects of single nucleotide variants 

(SNVs) with chromatin status (Ernst et al., 2010). 

For the first time, this work demonstrated that a 

comprehensive in silico analysis of well-known 

ncSNPs and regulatory regions is essential before we 

can attribute them to the Iranian population.  
It was previously reported that rs3746444 ( 

Kabirizadeh et al., 2016), rs1062577 ( Dehghan et 

al., 2017), and rs1049174 ( Ghobadzadeh et al., 

2013) are associated with an increased risk of breast 

cancer in the Iranian population. We focused on non-

coding proxy SNPs (LD≥0.8 with query SNPs 

rs3746444, rs1062577, and 1049174) which were 

obtained from LDlink. It was assumed that all non-

coding variant SNPs which are located in the 

regulatory regions (promoter, enhancer, 5`UTR, 

3`UTR) have a highly ranked RagulomeDB score 

(Table2). The meta-analysis of the rs3746444 in the 

Asian and Iranian population indicated a statistically 

significant relationship with the breast cancer by 

Odds Ratio(OR) = 1.15(1.09-1.22). These analyses 

were only possible for one SNP (Table 1). 

Moreover, the regulatory effects of rs3746444-

MYH7B/MIR499A, rs1062577-ESR1, and 

rs1049174-RP11-277P12.20 and their related proxy 

SNPs were determined based on the high LD. We 

apply this analysis to identify the most likely 

functional variant among MYH7B, ESR1, and RP11-

277P12.20 genes. However, a solid framework of 

the functional significance of variants cannot be 

obtained by a single bioinformatics tool. Hence, 

some complementary tools were applied to perform 

the current study. Three computational-based tools 

including LDlink, HaploReg, and RegulomeDB 

were used for above mentioned SNPs in a 

combinatory mode to prioritized ncSNPs for their 

association with the disease status. The LD structure 

haplotype block for the Iranian population was not 

available because GWAS studies have not been 

performed previously in Iran. Hence, related 

information from the Asian population were utilized 

as a reference for LDlink studies. 

We identified query SNP rs1049174 in 3’UTR 

region as the only previously wet-lab studied SNP 

with high ranked RegulomeDB score “1d” and 

validated functional effects (eQTL+TF binding+any 

motif+ DNase peak) (Table 2). rs1049174 caused 

histone modification H3K4me1 in both cancerous 

cell lines. It confirms that these enhancers are ready 

to be active. 

The present study demonstrated that SNPs in the 

MYH7B, TRPC4AP and RP11-277P12.20 genes 

(Table 2) in addition to the ncSNPs rs6088678, and 

rs2617160 are functionally important. Although, 

wet-lab experiments are essential for the validation 

of the results. Pairwise comparisons confirmed that 

intronic SNP rs6088678 (r2 = 0.87 with rs3746444) 

and RegulomeDB score “1f” showed more 

evidences of being functional in comparison to 

rs3746444 (Table 2). It was shown that the 

rs6088678 induced histone modification H3K9ac in 

the breast myoepithelial primary cells (Table 3).  

Due to our knowledge, this is the first association 

study between breast cancer susceptibility and 

polymorphisms of MYH7B, MIR499A, TRPC4AP, 

ESR1 and RP11-277P12.20 genes. These genes were 

selected using LDlink for the Iranian population. 

RegulomeDB is a powerful tool for the prediction of 

the regulatory potential of various variants. It is 

expected that the RegulomeDB web-based tool will 

be widely applied in the future for performing 

extensive association studies.  

 

Conclusion  
 

Considering the results of comparisons 

made in the present study which confirmed 

epigenetic properties for non-coding SNPs, the 

importance of these segments in the functional 

epigenetic studies were highlighted. Non-coding 

SNPs have a great impact on the binding capacity of 

regulatory proteins and gene expression pattern 

modifications as they can lead to histone 

modifications ( Khurana et al., 2016). In order to 

evaluate the possible functional properties of 

shortlisted SNPs in the Iranian population, in silico 

analyses using LDlink, RegulomeDB and HaploReg 

are strongly recommended. It could be expected that 

our computational model could prioritize variants in 

the regulatory regions. Thus, it helps researchers to 

figure out functional variants of noncoding regions 

with key effects in the pathogenesis of various 

diseases. 
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Abstract 
 

The Caspian Sea is the largest inland body of water in the world and so has both common characteristics 

of seas and lakes with over 153 fish species which inhabit the sea and its basin. However, little is known about the 

trace element (TE) contaminations (TECs) in its tissues. In the present study, 122 specimens of three fish species 

including Rutilus caspius (Roach, n=71), Leuciscus aspius (Asp, n=20), and Tinca tinca (Tench, n=31) were 

collected from three different fisheries regions (i.e. Astara, Anzali and Kiashahr) of the southern part of the Caspian 

Sea from September 2017 to June 2018. Inductively coupled plasma optical emission spectrometry (ICP-OES) was 

employed to measure TE levels in different fish tissues. An attempt was made to assess possible influences of 

habitat on element accumulation in the liver and kidney of three fish species in the southwest of the Caspian Sea 

basin. Some elements including Ca, K, Mg, P, S, Sc, and Sr showed different concentrations in the liver and 

kidney. Also their levels were significantly different between freshwater resident (Tench) and marine (Roach) 

species (p < 0.05). The differences among TECs in the liver and kidney of Roach, Asp and Tench were reduced to 

three components using principal component analysis (PCA).  Results indicated that 83.60% of the total variability 

is related to TEs such as Cu, Fe, Sr, Ca, S, Na, Mg, K, and Al. The impact of habitat variability on the element 

accumulation was confirmed through linear chart obtained for liver and kidney (as body filtering organs) of Roach 

and Asp as marine residents as well as Tench as a freshwater resident. This could illustrate the borderline created 

by these habitats.  

 

Keywords: Rutilus caspius, Leuciscus aspius, Tinca tinca, Trace elements, Caspian Sea 

 
 

Introduction1∗  

 

The trace element (TE) pollution in water 

resources has long been found to be a serious 

environmental concern (Pagano et al., 2017; 

Capillo et al., 2018; Chorehi et al., 2013). Aquatic 

organisms can accumulate TEs in their bodies via 

respiration, adsorption and ingestion (Zhou et al., 

2001; Boran et al., 2000). TE contamination is a 

serious problem in the coastal regions, due to waste 

disposal of discharges from agriculture, industries 

and some urban sources (Aliko et al., 2018; 

Burgos-Aceves et al., 2018). TE accumulation 

elevated in marine ecosystems as a direct result of 

anthropogenic activities (Seco-Gesto et al., 2007). 

TEs were categorized as potentially toxic 

(cadmium, arsenic, lead, mercury, nickel, etc.), 

probably essential (vanadium, cobalt) and essential 

(copper, selenium, iron, manganese, zinc) (Munoz-

Olivas et al., 2001). Fish is considered as a suitable 
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indicator for long term monitoring of TE 

contaminations in different water resources (Fazio 

et al., 2014; Sattari et al., 2019). Therefore, 

numerous studies have been conducted on TE 

accumulation in different fish species (Türkmen et 

al., 2007). 

The Caspian Sea is the world's largest inland body 

of water and thus has characteristics common to 

both seas and lakes. It is bordered by Russia 

(Dagestan, Kalmykia, and Astrakhan oblasts), the 

Republic of Azerbaijan, Iran (Guilan, Mazandaran 

and Golestan provinces), Turkmenistan, and 

Kazakhstan (Vajargah et al., 2014; Sattari et al., 

2019). Hence, not only it doesn’t contain fresh 

water, but also it is under intense pollutant threats 

from industrial and agricultural effluents as well as 

growing urbanization in the most riparian countries 

of the Caspian Sea (Karrari et al., 2012). 

There are numerous reports regarding the heavy 

metal contamination in aquatic environments of 

Iran including: Pourang et al., (2005) on five 

sturgeon species in the Caspian Sea; Abtahi et al., 

(2005) on Liza aurata in the south Caspian Sea; 

Sadeghirad, (2007) on Acipenser persicus and 
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Acipenser stellatus from the Caspian Sea; De Mora 

et al., (2004) on coastal sediments from the Caspian 

Sea; Amini Ranjbar and Sotudehnia, (2005) on 

Mugil auratus of the Caspian Sea; Askary Sary and 

Beheshti, (2012) on Liza abu from the Karoun and 

Karkheh rivers; Beheshti, (2011) on Liza abu 

collected from the Karkheh and  Karoon rivers; 

Ebrahimzadeh et al., (2011) on Liza saliens 

collected from the Caspian Sea; Khanipour et al., 

(2018) on Silurus glanis collected from Anzali 

Wetland, the southwest Caspian Sea; and Alipour 

and Banagar, (2018) on fish obtained from Gorgan 

Bay, the southeast Caspian Sea. There are also 

some reports on TE accumulations in R. kutum 

(Shahryari et al., 2010; Eslami et al., 2014; 

Mirzajani et al., 2016; Sattari et al., 2019). Eslami 

et al., (2011) reported the existence of TEs in 

muscle and liver of Perca fluviatilis and Tinca tinca 

in Anzali Wetland; Bibak et al., (2018) worked on 

heavy metal levels in sediments of the northern part 

of the Persian Gulf. This study aimed to determine 

the levels of some target trace elements (TEs) in the 

livers and kidneys of three fish species which were 

collected from the geographically different coastal 

regions of the Caspian Sea. 

 

Materials and Methods 
 

This study was conducted in three fisheries 

regions including Kiashahr (37° 42ʹ 20ʺ N, 49° 94ʹ 

95ʺ E), Astara (38° 42ʹ 25ʺ N, 48° 86ʹ 87ʺ E), and 

Anzali (37° 46ʹ 39ʺ N, 49° 47ʹ 99ʺ E) along the 

south western coasts of the Caspian Sea. 122 

specimens were collected from September, 2017 to 

January, 2018 from three different fish species 

including Rutilus caspius (Roach, n=71), Leuciscus 

aspius (Asp, n=20), and Tinca tinca (Tench, n=31) 

with gill net. The specimens were transported to the 

Fish Biology Laboratory, University of Guilan, 

Sowmeh Sara, Iran by a styrofoam cooler box at 

4°C. Fish were washed using distilled water, 

dissected and pieces of muscle were dried in the 

oven (80°C for 18 h) (Vajargah et al., 2018b). Fish 

age was determined with scales during the process.  

To extract TEs, 0.5 g of each tissue was digested in 

10 ml of 65% nitric acid in a microwave oven. 

Then, specimens were passed through the Whatman 

filter paper No. 40 and were diluted in distilled 

water to the required volume. An inductively 

coupled plasma–optical emission spectrometry 

(ICP-OES) (Zarazma Co. Tehran, Iran) was 

employed to measure trace element levels in the 

specimens. Instrumental detection limits for trace 

and major (Al, Ca, Fe, K, Mg, Mn, Na and Si) 

element measurements were equal to 0.02 mgkg-1, 

and 0.1 mg kg-1, respectively.  
 
Statistical analyses 

     After examining the normality of acquired data 

and homogeneity of variances in the fish tissues 

(liver and kidney) from different habitats, the 

variability of TE concentrations was investigated 

through one-way analysis of variances (ANOVA). 

For heterogeneous variables, the Kruskal-Wallis 

test was employed, otherwise, we used Man-

Whitney U test (Zar, 1996).  

Principle component analysis (PCA) was used to 

reduce the number of variables without losing much 

information (Quinn and Keouch, 2002). 

Eigenvalues against the number of principal 

components and also the values of cumulative 

variances were provided to define the important 

principle components and elements. Discriminant 

function analysis (DFA) was employed to calculate 

the exact place of each fish species which were 

related correctly. Ward’s method, as a 

complementary method for DFA, was employed to 

construct cluster dendrogram using Euclidean 

distance (average linkage clustering). All statistical 

analyses were performed using SPSS version 16.0 

(significance level α=0.05, SPSS Inc., Chicago, IL, 

USA).  

 

 
Figure 1. Map of the study area along the south western coasts of the Caspian Sea 
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Results  
 

 In the present study, several specimens 

from three different fish species were dissected and 

their kidney and liver tissues were examined for the 

presence of 36 elements including: Silver (Ag),  

Aluminum (Al), Arsenic (As), Barium (Ba) 

Beryllium (Be), Bismuth (Bi), Calcium (Ca),  

Cadmium (Cd), Cesium (Ce), Cobalt (Co), 

Chromium (Cr), Copper (Cu), Iron (Fe), Potassium 

(K), Lanthanum (La), Lithium (Li), Magnesium 

(Mg), Manganese (Mn), Molybdenum (Mo), 

Sodium (Na), Nickel (Ni), Phosphorus (P), lead 

(Pb), Rubidium (Rb), Sulfur (S), Antimony (Sb), 

Scandium (Sc),  Silicon (Si), Tin (Sn), Strontium 

(Sr), Thorium (Th), Titanium (Ti), Uranium (U), 

Vanadium (V), Tungsten (W), Yttrium (Y) and 

Zinc (Zn).  

      Some elements such as Ca, K, Mg, P, S, Sc and 

Sr exhibited different concentrations between liver 

and kidney (*p<0.05, Table 1). Their levels were 

also displayed significant differences between 

Tench, as a freshwater resident, and Roach, as a 

marine species (Table 2). The variability of TECs 

in different edible tissues of Roach, Asp and Tench 

was reduced to three components using PCA (PC1= 

46.32%, PC2 =22.48% and PC3=14.79%) (Figures 

2-3). It was found that 83.60% of total variation is 

related to TEs such as Cu, Fe, Sr, Ca, S, Na, Mg, K 

and Al (Table 3). The three-dimensional diagram 

illustrated the weight of each component in PCA is 

shown in Figure 3 (Figure 3). The first component 

was mainly influenced by Na, Mg, K and S (Table 

3). Ca and Sr had special contributions in PC2, 

while the highest values in PC3 were obtained for 

Cu, Fe and Al (Table 3). 
 

Table 1. Mean of concentration±SD for different elements in the liver and kidney of the sea water fish and lagoon fish 

of the Iranian Caspian Sea (*p <0.05). 

Elements Elemental concentration (ppm; Median ± SD) p value 

T. tinca R. caspius L. aspius 

Al 019 ± 0.20 0.22 ± 0.11 0.05 ± 0.05 0.46 

Ca 9.06 ± 0.38 25.84 ± 9.73 97.30 ± 73.30 0.02 

Cr 0.00 ± 0.00 0.02 ± 0.01 0.09 ± 0.01 0.12 

Cu 0.07 ± 0.05 0.17 ± 0.12 0.00 ± 0.00 0.36 

Fe 1.59 ± 0.59 4.82 ± 1.92 0.63 ± 0.25 0.17 

K 38.33 ± 12.97 114.62 ± 8.01 115.30 ± 67.60 0.03 

Mg 4.03 ± 0.81 15.06 ± 2.33 17.05 ± 5.25 0.02 

Na 20.57 ± 5.78 56.16 ± 6.25 48.50 ± 19.70 0.58 

P 36.27 ± 11.60 117.00 ± 13.94 220.60 ± 119.9 0.02 

S 29.73 ± 10.18 99.18 ± 8.56 92.70 ± 52.00 0.03 

Sb 0.08 ± 0.08 0.04 ± 0.02 0.09 ± 0.09 0.59 

Si 0.00 ± 0.00 0.30 ± 0.06 0.26 ± 0.06 0.02 

Sr 0.05 ± 0.02 0.26 ± 0.12 0.72 ± 0.63 0.02 

Zn 0.70 ± 0.12 2.08 ± 0.28 1.20 ± 0.30 0.08 
 

 

Table 2. Pair-wise comparisons (Mann–Whitney U-test) of the significant elements among the fish belongs to sea water 

and lagoon of the Iranian Caspian Sea. 

Elements Tench-roach Tench-asp Roach-asp 

 M-W Z p M-W Z P M-W Z p 

Ca 0.00 -2.24 <0.05 0.00 -1.73 >0.05 1.00 -1.55 >0.05 

k 0.00 -2.24 <0.05 1.00 -1.16 >0.05 5.00 0.00 >0.05 

Mg 3.00 -2.24 <0.05 1.00 -1.73 >0.05 0.00 -0.78 >0.05 

P 0.00 -2.24 <0.05 0.00 -1.73 >0.05 3.00 -0.78 >0.05 

S 0.00 -2.24 <0.05 0.00 1.00 >0.05 1.00 5.00 >0.05 

Sr 0.00 -2.24 <0.05 0.00 -1.73 >0.05 4.50 -0.20 >0.05 

Si 0.00 -2.29 <0.05 0.00 -1.94 >0.05 4.50 -0.20 >0.05 
 

M-W and Z are grouping variable scores for Mann–Whitney U and Kruskal–Wallis tests (*p <0.05). 
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Figure 2. Principal component analysis (PCA) of elemental concentrations of the fish liver and kidney between habitats 

in the coastal water of the Iranian Caspian Sea. Scatter plots demonstrate individual fish scores for PC1 vs. PC2, PC1 

vs. PC3, and PC2 vs. PC3 which together explain 83.60% of the total variance, this graph obtained by SPSS version 

16.0. 

 

 
Figure 3. Characteristic load for PC1, PC2 and PC3 obtained by multi-elemental principal components analysis (PCA) 

for the elemental concentrations of the fish liver and kidney between habitats in the south Caspian Sea water, this graph 

obtained by SPSS version 16.0. 

 

Table 3. Characteristic load for PC1, PC2 and PC3 obtained by principal component (PCA) analysis for elemental 

concentrations of the fish liver and kidney between habitats (sea water and lagoon) in the water of Iranian Caspian Sea 

Elemental variables *PC1 PC2 PC3 

Al .012 .418 .629 

Ca .087 .903 -.361 

Cr .576 .661 -.360 

Cu .544 .084 .666 

Fe .615 .039 .683 
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K .906 -.337 -.179 

Mg .965 .044 -.138 

Na .933 -.233 -.041 

P .777 -.152 -.473 

S .952 -.267 -.078 

Sb -.287 .622 .286 

Si .844 .437 .188 

Sr .174 .931 -.199 

Zn .718 -.046 .256 
 

* Principle Components 

 

The matrix composed of element concentrations in 

liver and kidney tissues of Roach, Asp, and Tench 

was described with two discriminant components. 

These experiments successfully discriminate the 

two investigated habitats (Wilk’s Lambda=0.001, 

X2=27.63, df=14 and p<0.05, Figure 4). Cluster 

analysis, as a complementary method, divided the 

fish into two sub-groups. No variation was found 

for element concentrations in Roach and Asp, while 

Tench was placed in a distinct subgroup (Figure 5). 

 

 

 
Figure 4.  Plot of discriminant functions 1 and 2 for the elemental concentrations of the fish liver and kidney between 

habitats in the coastal water of the Iranian Caspian Sea, this graph obtained by SPSS version 16.0. 

 

 
Figure 5. Dendrogram derived from cluster analysis of the elemental concentrations of the fish liver and kidney 

between habitats in the coastal water of the Iranian Caspian Sea, Cluster analysis, as a complementary method, divided 

the fish into two sub-groups. No variation was found for element concentrations in Roach and Asp, while Tench was 

placed in a distinct subgroup, this graph obtained by SPSS version 16.0. 
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Discussion 

 
In the present study, an attempt was made 

to assess possible influences of habitat on the 

elements accumulation in the liver and kidney 

tissues of some fish species in the southwest of the 

Caspian Sea basin. Linear charts of element 

accumulations in the body filtering organs of 

Roach, Asp, and Tench exhibited their enough 

variability based on the habitats and also illustrated 

the borderline created by these habitats.  The 

consequences of different elements 

bioaccumulation on fish tissues depend on sex, 

maturation stage, size, tissue type, habitat and fish 

diet (Azevedo et al., 2009). Previous studies 

revealed that element bioaccumulation in various 

fish tissues take place at different levels; but, in 

short time periods, filtering organs such as liver 

exhibit higher levels of these elements (Afonso et 

al., 2017, Alamdar et al., 2017; Salgado-Ramírez et 

al., 2017). This is while, gills and gut are the first 

organs receiving these elements (Tiphaine et al., 

2018). Therefore, liver could be considered as the 

main organ for element aggregation monitoring 

studies (Salgado-Ramírez et al., 2017)  

Since metal elements find their way to the aquatic 

environment and deposit in sediments, the demersal 

and benthivorous fish species are more susceptible 

to element bioaccumulation than planktivorous fish 

(Trevizani et al., 2019). 

Little is known about Cu accumulation in fish 

species. However, it has been found in the higher 

than normal levels in the food chain which is 

distinguishable from low-level elements. It seems 

that raising in Metallothionein levels could be 

considered as an exact indicator of Cu existence in 

the ambient environment (Marijić and Raspor, 

2007). This is reduced upon the migration of the 

fish from saltwater to freshwater (Ohji et al., 2007). 

It is also true for Sr which is found in higher 

amounts in saltwater in comparison to freshwater. 

So that, Strontium levels are higher in fish tissues 

with long residence times in sea water, regardless 

of the fish diet. 

Meanwhile, there is a positive correlation between 

Sr and Ca. So that, its concentration is raised by 

low temperature and high salinity (Walther and 

Thorrold, 2006), instead of the fish diet in Asp 

tissues. Overall, the present study provides some 

basic information about elements bioaccumulation 

in the fish filtering tissues from different 

ecosystems with various salinity levels. These data 

could be applicable in determining the focal points 

of contaminations. 
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Abstract  
 

Recent genome-wide association studies have introduced several genetic variants which contribute to the 

late-onset Alzheimer's disease (LOAD). Polymorphisms of CHAT, TOMM40, and SORL1 genes have been reported 

to be associated with the LOAD phenotype. This study was endeavored to evaluate the association of the CHAT 

rs3810950, TOMM40 rs1160985 and SORL1 rs11218304 polymorphisms with the LOAD in the Turkish-speaking 

Azeri population of northwest Iran. In a case-control study, we included 174 cases: 88 cases with LOAD diagnosis 

and 86 healthy individuals. Peripheral blood samples were collected and the genomic DNA of all participants were 

extracted. Genotyping was carried out by the polymerase chain reaction-restriction fragment length polymorphism 

(PCR-RFLP) method. We did not observe any significant association between the CHAT rs3810950 and SORL1 

rs11218304 alleles with the LOAD. However, both the TOMM40 rs1160985 minor allele T and TT genotype showed 

significant negative associations with the LOAD. Hence, the TOMM40 rs1160985 polymorphism could be considered 

as a protective genetic factor against the LOAD in the Turkish-speaking Azeri population of northwest Iran. 

 
Keywords: Alzheimer’s disease, SORL1, CHAT, TOMM40, Genome-wide association study 

 

 
 

Introduction1∗  

 

 Dementia syndrome due to the Alzheimer’s 

disease (AD) is one of the most expensive chronic 

diseases with powerful threat (Belmonte et al., 

2015). According to the 2019 Alzheimer’s Disease 

Facts and Figures, of 5.6 million persons aged 65 and 

older with Alzheimer’s in the United States, 3.5 

million are women and 2.1 million are men 

(Association, 2019). Considering the ever-

increasing feature of the disease, it is estimated that 

the number of individuals with AD will be more than 

15 million in 2060 (Brookmeyer et al., 2018). These 

warns highlighted the urgent need for the 

development of new diagnostics and therapeutics; 

ranging from biomarker discovery (Fotuhi et al., 

2019; Yanfang Zhao, 2019) to in vivo 

reprogramming of the terminally differentiated cells 

(Yavarpour-Bali et al., 2020). 

AD occurs in familial and non-familial forms (early 

vs. late age-onset, respectively). Both genes and 

environment are responsible for the appearance of 

the non-familial sporadic late-onset AD (LOAD), as 

                                                 
*
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a complex disorder (Bertram et al., 2010). Genetic 

factors are estimated to play a role at least in 80% of 

AD cases (Gatz et al., 2006; Tanzi, 2012). In 

addition, at least up to age of 80, having a family 

history of AD increases the risk of developing 

disease up to 4 to 10 folds (Honea et al., 2012). 

Recent case-control and genome-wide association 

studies (GWAS) have partly revealed the genetic 

origin of the LOAD and highlighted its complex 

nature (Liu et al., 2016; Ortega-Rojas et al., 2016; 

Talebi et al., 2020; Yuan et al., 2016). Based on these 

reports, CHAT, SORL1, and TOMM40 are important 

genes in the LOAD pathogenesis.  

The gene encoding for TOMM40 (Translocase of 

outer mitochondrial membrane 40 homolog) is 

located on the chromosome19, closely next to the 

gene which is encode for Apolipoprotein E (ApoE). 

So, it has a strong linkage disequilibrium (LD) with 

it (Lyall et al., 2014). TOMM40, the central and key 

subunit of the translocase of the outer mitochondrial 

membrane, is essential for protein import into the 

mitochondria. Genetic variations in or close to the 

TOMM40 gene affect the role of the TOMM40, 
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thereby, causing mitochondrial dysfunction 

(Petschner et al., 2018). Involvement of TOMM40 in 

the LOAD pathogenesis has been proposed by 

several researchers (Petschner et al., 2018; Willette 

et al., 2017), however, its role in LOAD 

pathogenesis was controversial (Yu et al., 2007). Yu, 

et al. reported a significant LD between TOMM40 

and APOE in the Caucasians. The involvement of 

TOMM40 in LOAD was further supported by some 

later studies (Jiao et al., 2015; Omoumi et al., 2014; 

Ortega-Rojas et al., 2016; Roses et al., 2016). 

Interestingly, two studies on the Chinese and 

Columbian populations reported that TOMM40 

rs1160985 might be useful for early diagnosis of the 

LOAD (Jiao et al., 2015; Ortega-Rojas et al., 2016).  

CHAT (Choline O-acetyltransferase) encodes an 

enzyme which is crucial for the synthesis of 

acetylcholine, one of the main neurotransmitters in 

the brain. The choline acetyltransferase (ChAT) 

activity seems to be associated with the severity of 

dementia (Gao et al., 2016), and its polymorphisms 

are known to be also related with the LOAD 

(Thangnipon et al., 2016; Yu et al., 2015). 

Conversely, others did not find any significant 

association between CHAT polymorphisms and 

LOAD (Cook et al., 2005). 

Sortilin related receptor 1 (SORL1) functions as a 

neural sorting factor (Felsky et al., 2014). It transfers 

the amyloid precursor protein (APP) to the recycling 

pathway and hinders the beta amyloid formation in 

the brain (Rogaeva et al., 2007). Some studies have 

reported the association of SORL1 with the LOAD 

(Rosenberg et al., 2016); but, others didn’t approve 

this association (Rogaeva et al., 2007) or reported 

inconsistent findings (Reynolds et al., 2013). 

Controversial findings also were recorded for 

SORL1 rs11218304. Rogaeva et al. reported no 

relationship between this variant with the LOAD 

(Rogaeva et al., 2007), while others indicated 

significant associations between rs11218304 and 

LOAD (Louwersheimer et al., 2015; Shao et al., 

2017). 

     This study aimed to investigate genotypes and 

alleles frequencies of the polymorphisms rs3810950 

(CHAT), rs11218304 (SORL1), and rs1160985 

(TOMM40) in a population from northwest of Iran 

and evaluate their associations with the late-onset 

Alzheimer's disease. 

 

Materials and Methods 

 
Participants 

     In the present case-control study, 88 patients with 

LOAD (53 women, 35 men) and 86 healthy 

voluntaries (53 women, 33 men) from the Turkish-

speaking Azeri population of northwest Iran were 

included. All subjects were older than 65 years. The 

case and control groups, as far as possible, were 

matched for different parameters such as age and 

sex. All of the subjects were evaluated by a 

neuroscience specialist in the Clinic of the Imam 

Reza Medical Research Center, Tabriz, Iran. 

Subjects were diagnosed based on the National 

Institute of Neurological and Communicative 

Disorders (NINCDS) and Stroke and the 

Alzheimer's Disease and Related Disorders 

Association (ADRDA) criteria (Dubois et al., 2007). 

All cases were assessed using physical examinations 

and neuropsychological tests. Furthermore, the 

Mini-Mental State Examination (MMSE) was 

carried out to evaluate any cognitive deficit in both 

groups. The study protocol was approved by the 

Clinical Research Ethics Committee of Tabriz 

University of Medical Sciences and written 

informed consent was obtained from all individuals 

in accordance with the approved guidelines from the 

Neurology Department at Imam Reza Hospital. 

Participants with a family history of AD and other 

neurological illnesses such as hypothyroidism, 

alcoholism, hepatic lesions, spasticity, subdural 

hematoma, traumatic brain injury, encephalitis, 

frontal lobe dementia, and Lewy body dementia 

were excluded from the study. Participants with no 

memory complaint or cognitive dysfunctions and 

MMSE score more than 27 were defined as normal 

cases. 

 

DNA preparation and genotyping  
      Genomic DNA were extracted from peripheral 

blood lymphocytes using the salting out DNA 

extraction method (Miller et al., 1988). The Single-

nucleotide polymorphisms (SNPs) in TOMM40 

(rs1160985), CHAT (rs3810950), and SORL1 

(rs11218304) genes were genotyped by polymerase 

chain reaction-restriction fragment length 

polymorphism (PCR-RFLP) analysis. Primer 

sequences and size of their amplicons are shown in 

the Table 1. The PCR reactions were done in a final 

volume of 20 μl (1 μl genomic DNA, 0.75 μl dNTPs 

10 mM (Fermentas, Life Sciences), 1 μl of each of 

the forward and reverse primers (Metabion), 2 μl of 

10× buffer, 0.5 μl MgCl2 50 mM and 1U of Taq 

polymerase (Sinacolon)). The optimized PCR 

condition was as follows: initial denaturation (95°C, 

5 min), followed by 35 cycles of 95°C for 30s, 60°C 

for 30s, and 72°C for 40s. It was followed by a final 

extension (72 °C, 5 min). Then, PCR products were 

digested by specific restriction enzymes. In addition, 

10% of the total volume of PCR products were 

randomly sequenced to confirm the results of RFLP 
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analysis. 
Table 1. Primer sequences applied during PCR experiments in addition to their amplicons size. 

 

Direction Primer sequence Length (bp) Gene (SNP) 

Forward 5′-CAAAGTGAATCCATCTCCATCC-3′ 
345bp TOMM40 (rs1160985) 

Reverse 5'-CAAGGGCAGAATCCAAGC-3' 

Forward 5'- GTTGATGCTTCCCACTTCTTG -3′ 
483bp CHAT (rs3810950) 

Reverse 5'-GTAGGAATTCAGCCCCACC-3' 

Forward 5'-TCCCTCCTGTCCCGACTTC -3′ 
386bp SORL1 (rs11218304) 

Reverse 5'-CGCATACAAGCACGCATAAG-3' 

SNP: Single-nucleotide polymorphism; bp: base pair 

 

Genotyping of CHAT rs3810950  
     The resulting 483 bp PCR products of CHAT 

were digested with 1U of ApeK1 (Ferments, Life 

Sciences) for 16h at 37°C. Final preparations were 

electrophoresed on agarose gel (2%) in order to 

identify the genotypes of each person. Samples 

prepared from homozygous (GG) and heterozygous 

(GA) genotypes were contained 2 (100 and 383 bp) 

and 3 (483, 100, and 383 bp) fragments, 

respectively, whereas a single band with 483 bp 

length was obtained for genotype AA. 

  

Genotyping of TOMM40 rs1160985  

     The resulting 345 bp PCR product of TOMM40 

gene was digested with 1U of Acc1 (Ferments, Life 

Sciences) at 37°C for 16h. Following digestion, 

genotypes of the people were determined using 2% 

agarose gel electrophoresis. The homozygote TT and 

heterozygous CT genotypes contained 2 fragments 

(100 and 245 bp) and 3 fragments (345, 100, and 245 

bp), respectively; whereas CC genotype showed a 

band of 345 bp.  

 

Genotyping of SORL1 rs11218304  

     The resulting 386 bp PCR product of SORL1 gene 

was digested with 1U of ApeK1 (Ferments, Life 

Sciences) for 16h at 37°C. Digestion products were 

electrophoresed on 2% agarose gel and genotypes of 

the people were determined. The homozygote AA 

and heterozygous AG contained 2 fragments (142 

and 244 bp) and 3 fragments (386, 142, and 244 bp), 

respectively; while GG genotype showed a band of 

386 bp.  

 

Statistical analyses 

     The SPSS software version 21.0 (IBM SPSS, 

Armonk, NY, USA) was utilized for statistical 

analyses. The Hardy-Weinberg equilibrium (HWE) 

was assessed using a goodness-of-fit χ2 test. Allelic 

and genotypic frequencies were compared among 

examined groups using the Student’s t-test and Odds 

ratio (OR) of each genotype was assessed with 

confidence interval (CI) 95%. P value ≤0.05 was 

considered as statistically significant. 

 

Results  

 
In this case-control study, 88 LOAD patients 

and 86 healthy individuals were enrolled. Table 2 

represents demographic data of the LOAD and 

healthy subjects. There were no significant 

differences between LOAD and control groups 

regarding age, sex, and educational levels (p>0.05). 

Moreover, allele and genotype frequencies were 

calculated for CHAT rs3810950, TOMM40 

rs1160985, and SORL1 rs11218304 gene 

polymorphisms in LOAD and control cases. The 

Chi-square Test revealed that the study population 

was in Hardy-Weinberg equilibrium for these loci. 

    

Allele and genotype distributions of rs3810950 

(CHAT) polymorphism  

The frequency of minor allele A of CHAT rs3810950 

polymorphism was 36% in the LOAD group and 

46% in the control group; while the frequency of 

allele G was 64% in the LOAD and 54% in the 

control group. The frequencies of AA, AG, and GG 

genotypes were calculated as 9%, 53%, and 38% in 

the LOAD group, respectively. However, the 

frequencies of these genotypes were equal to 10%, 

70%, and 19% in the control group. Statistical 

analysis (Table 3) revealed that the frequencies of 

genotype GG were significantly different between 

the LOAD and control groups (p= 0.002, OR=2.49, 

95% CI=1.25-5.03).  
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Table 2. Sociodemographic characteristics of LOAD patients and healthy controls.  

Variables LOAD (n=88) (%) Control (n=86) (%) p value 

Gender 

Female 53 (60.2) 53 (61.6) 0.85 

Male 35 (39.8) 33 (38.4)  

Age (mean±SD) 71.84±6.51 71.22±5092 0.57 

Education 

Illiterate (%) 54 (61.33) 50 (58.1) 

Primary (%) 26 (29.54) 31 (36.05) 

 

Diploma (%) 3 (3.40) 4 (4.6) 

College (%) 1 (1.13) 1 (1.2) 

MMSE (mean±SD) 19.33±5.0002 27.30±0.543 

SD: standard deviation; MMSE: mini-mental status score; AD: Alzheimer’s disease; n: number. 

 
 

Table 3. Allele and genotype distributions of the CHAT rs3810950, TOMM40 rs1160985 and SORL1 rs11218304 

polymorphisms in the LOAD and healthy control groups. 

p value 
Odds ratio 

(95% CI) 
HWE 

Total 

population 

Control 

(n=86) 

LOAD 

(n=88) Alleles/ 

Genotypes 

Polymorphism 

 
n (%) n (%) 

n (%) 

 

0.098 0.660 (0.375-1.164)  142 (41) 79 (46) 63 (36) A 

 

 

CHAT 

rs3810950 

0.098 1.514 (0.859-2.670)  206 (59) 93 (54) 113 (64) G 

0.50 0.890 (0.345-2.294) 
 

0.00017 

 

17 (9.8) 9 (10) 8 (9) AA 

0.007 0.461(0.257-0.826) 
108 

(62.06) 
61 (71) 47 (53) AG 

0.002 2.49 (1.25-5.03) 49 (28.16) 16 (19) 33 (38) GG 

0.000 0.292 (0.163-0.529)  147 (42) 98 (57) 49 (28) T 

 

TOMM40 

rs1160985 

0.000 3.409 (1.891-6.145)  201 (58) 74 (43) 127 (72) C 

0.000 0.161 (0.073-0.357) 
 

0.0019 

41 (23.56) 33 (38) 8 (9) TT 

0.50 1.044 (0.589-1.850) 65 (37.36) 32 (37) 33 (38) TC 

0.000 3.571 (1.952-6.533) 68 (39.08) 21 (24) 47 (53) CC 

0.374 0.857 (.457-1.607)  255 (73) 129 (75) 126 (72) A  

 

SORL1 

rs11218304 

 

0.374 1.167 (.422-2.188)  93 (27) 43 (25) 50 (28) G 

0.500 .961(.552-1.673) 

0.00084 

86(49.42) 43 (50) 43 (49) AA 

0.286 .818(.469-1.426) 83(47.70) 43 (50) 40 (45) AG 

0.030 2.053 (.935-2.053) 5(2.87) 0 5(6) GG 

LOAD: late-onset Alzheimer’s disease; SORL1: Sortilin related receptor 1; CHAT: choline O-acetyltransferase; 

TOMM40: translocase of outer mitochondrial membrane 40 homolog; HWE: Hardy-Weinberg equilibrium; n: 

number; CI: confidence interval. 

 

Allele and genotype distributions of rs1160985 

(TOMM40) polymorphism 

The frequency of minor allele T of rs1160985 

polymorphism was 28% in the LOAD group and 

57% in the control group while the allele C 

frequency was 72% in the LOAD group and 43% in 

the control group. Distribution of TT, TC, and CC 

genotypes (Table 3) for this polymorphism in the 

case group was 9%, 38%, and 53%, and in healthy 

individuals was 38%, 37%, and 24%, respectively. 

Statistical analysis revealed significant differences 

for allele C (p=0.000, OR=3.429, 95% CI=1.83-

6.47) and CC genotype (p=0.000, OR=3.550, 95% 

CI=1.865-6.795) frequencies in case and control 

groups. 

 

Allele and genotype distributions of rs11218304 

(SORL1) polymorphism 

The frequency of minor allele G of rs11218304 

polymorphism was 28% in the LOAD group and 

25% in the control group, while the allele A 

frequency was calculated as 72% and 75% in the 
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LOAD and control groups, respectively (Table 3). 

Genotype frequencies of AA, AG, and GG for 

rs11218304 were calculated as 49%, 45%, and 6% 

in the LOAD group, respectively. They were equal 

to 50%, 50%, and 0% in the control group. There 

was a significant difference between the frequencies 

of genotype GG in the case and control groups 

(p=0.030, OR=2.053, 95% CI=0.935-2.053).  

 

Discussion 
 

Recent meta-analyses, reviews, and 

genome-wide association studies have reported that 

the genetic variants in TOMM40, CHAT, and SORL1 

are in association with the LOAD (Campion et al., 

2019; Grupe et al., 2007). In the present study, we 

evaluated the association of CHAT rs3810950, 

TOMM40 rs1160985 and SORL1 rs11218304 

polymorphisms with the LOAD in the Turkish-

speaking Azeri population of northwest Iran. In the 

case of CHAT rs3810950 polymorphism, the minor 

allele A frequency was 0.41 which is higher than all 

minor allele frequencies (MAFs) reported in the 

dbSNP (https://www.ncbi.nlm.nih.gov/snp/). 

However, its frequency was not significantly 

different between LOAD and control groups 

(p=0.891), which demonstrated the lack of 

association between the allele A and LOAD in the 

study population. It was while, the comparison of the 

genotype frequencies between the LOAD and 

control groups revealed a significant difference for 

the GG genotype (p=0.002, OR=2.49, 95% CI=1.25-

5.03). These results are consistent with the results 

from a previous study which reported the lack of 

relationship between the rs3810950 (CHAT) 

polymorphism and the LOAD risk in Caucasian 

cohort (UK)(Cook et al., 2005). In contrast, another 

study performed on the Korean population by Lee et 

al. showed that individuals carrying the AA 

genotype had a significantly earlier onset of the 

LOAD (Lee et al., 2011). Furthermore, a meta-

analysis showed that rs3810950 of CHAT is 

associated with the LOAD susceptibility (Gao et al., 

2016; Yuan et al., 2016). 

Moreover, we evaluated the association of 

TOMM40 rs1160985 with the LOAD condition. The 

frequency of minor allele T in the whole study 

population was calculated as 0.42 which was higher 

than the Vietnamese people and lower than all other 

populations which were reported in the dbSNP 

(https://www.ncbi.nlm.nih.gov/snp/). Differences 

between minor allele T frequencies among the 

LOAD (0.28) and control (0.57) groups were 

statistically significant (p=0.000; OR=0.292; CI: 

0.163-0.529); implying its negative association with 

the LOAD in the examined population. Furthermore, 

the frequencies of people with TT genotype in the 

LOAD (0.09) and control (0.38) groups were 

significantly different (p=0.000; OR=0.157; CI: 

0.07-0.37). The frequency of heterozygote TC 

genotype did not show any significant difference 

between the two investigated groups (p=0.471). 

These findings suggested that the minor allele T and 

the genotype TT of the TOMM40 rs1160985 

strongly protect people against the LOAD in the 

northwestern Iran. These findings are consistent with 

the reports obtained for the populations of European 

descent (Roses, 2010), mainland China (Jiao et al., 

2015), and the Japanese people (Takei et al., 2009). 

However, These are inconsistent with the results 

reported by the studies focused on the Northern-Han 

Chinese population (Ma et al., 2013). It should be 

mentioned that the Alzheimer-associated C allele of 

rs1160985 (TOMM40) was reported as the LOAD 

risk allele by Jiao et al. (Jiao et al., 2015). Unlike the 

TOMM40 rs1160985 with protective role against the 

LOAD, several SNPs of TOMM40 are served as the 

LOAD genetic risk factors (Prendecki et al., 2018; 

Zeitlow et al., 2017). 

A high-quality meta-analysis performed on 

more than 30000 individuals showed that different 

SNPs in SORL1 gene are in relationship with the 

LOAD status (Reitz et al., 2011). We examined the 

association of an intronic polymorphism of the 

SORL1 gene, designated with rs11218304, with the 

LOAD. Results demonstrated that the frequency of 

minor allele G is equal to 0.27 in the study 

population. Comparative studies indicated non-

significant differences in the frequency of the allele 

G in LOAD and control groups (p=0.374). 

Reversely, the frequency of risk genotype GG was 

significantly different between the LOAD and 

control groups (p=0.03; OR=2.053; CI: 0.935-

2.053). In fact, although we had 5 patients with GG 

genotype, we did not observe any individual with the 

same genotype among the controls. These data, at 

least to some extent, support similar data from other 

studies introduced allele G and GG genotype as key 

genetic risk factors for the appearance of LOAD 

phenotype in the other populations. For example, 

Rogaeva et al. reported that rs11218304 (SORL1) is 

significantly associated with LOAD (Rogaeva et al., 

2007). Moreover, its association with the poor 

cognitive efficiency in the LOAD was reported 

previously (Cruz-Sanabria et al., 2018). However, 

Ortega-Rojas et al. did not find any significant 

association between the rs11218304 variant and 

cognitive decline in the LOAD patients in the 

Colombians (Ortega-Rojas et al., 2016). 

 

https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rogaeva%20E%5BAuthor%5D&cauthor=true&cauthor_uid=17220890
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Conclusion 
 

In conclusion, the frequency of rs3810950 

(CHAT) allele was not significantly different 

between LOAD and control subjects, while the GG 

genotype showed a significant association with 

LOAD in the examined population. Moreover, we 

observed that the minor allele T of rs1160985 

(TOMM40) and TT genotype can strongly serve as 

protective genetic factors against the LOAD. 

Furthermore, although rs11218304 (SORL1) alleles 

frequencies were not significantly different between 

the LOAD and control groups, the GG genotype 

frequency showed a significant difference between 

the investigated groups. This implies the potential 

association of GG genotype with the LOAD 

phenotype in the Azeri population of Northwest Iran.     
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