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Abstract 
 

In this study, putative interactions between all of the retinoic acid (RA) ligands (all-trans (At), 9-cis (9c), 

and 13-cis (13c)), and VEGF receptors (VEGFR-1, -2 and -3) were investigated. It was performed considering the 

glycosylation status of the receptors to achieve a more reliable mode of interactions based on glycomics. We found 

that RAs may have a higher affinity for ligand-binding domains in VEGFRs. Furthermore, all RA isomers can 

strongly attach to VEGFR-3 receptor in comparison to other ones. It was also demonstrated that receptor dimerization 

of RAs may be less targeted. Moreover, regarding post-translational modifications, glycosylated structures showed 

conflicting binding energies. RAs may target the human vasculature, specifically lymph vessels, through VEGFR-3. 

In addition, the ligand binding-mediated activation of VEGFRs may be affected by these agents. Also, the 

glycosylation status of the receptors can interfere with these manners. Furthermore, our results confirmed that the 

consideration of carbohydrates in crystal structures is essential for a better interpretation of ligand/receptor 

interactions during drug discovery studies. Even though these observations improved our understanding of the 

binding patterns of RAs to VEGFRs, validation of these results needs further analysis to introduce these biomolecules 

as anti-VEGF remedies.  
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Introduction1∗  

 

Organization of blood and lymphatic 

vessels, vasculogenesis and angiogenesis, is critical 

to provide whole-body with fresh oxygen and 

nutrient supply and remove catabolites. At the 

cellular level, activation of vascular endothelial 

growth factor receptors (VEGFR-1, -2, and -3) by 

their cognate ligands (different isotypes of VEGF) is 

the most important receptor tyrosine kinase/RTK-

related signaling pathway. This pathway adjusts 

multiple processes which are essential for 

developmental, physiological, and pathological 

neovascularization (Christensen et al. 2017; Lee et 

al. 2017; Qiao et al. 2006; Shibuya 2013). The 

VEGFs are signal proteins which are produced by 

cells to trigger the formation of vessel networks via 

binding to their corresponding RTKs. All isoforms 

of VEGF-A can bind to VEGFR-1 and VEGFR-2, 

while VEGF-B is special for VEGFR-1 (Álvarez-

Aznar et al. 2017; Goel and Mercurio 2013; Jeltsch 

et al. 2006; Leppänen et al. 2010). VEGF-C and 

VEGF-D isoforms with cleaved C-terminal domain 

are high-affinity ligands for VEGFR-3. Upon 
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elimination of both pro-peptides, they obtain binding 

affinity for VEGFR-2. VEGF-E which exists in 

poxviruses can specifically bind to VEGFR-2 

(Mercer et al. 2002).  

As the ligand binding to the extracellular domain 

(ECD) of VEGFRs is required for their stimulation, 

the disruption of these ligand/receptor complexes 

deregulates their RTK and normal physiological 

activities. For this reason, ligand trapping from 

VEGFR-1 is resulted in the placental loss of 

preeclampsia and abnormalities in retinal and 

corneal vascularization (Markovic-Mueller et al. 

2017). In contrast, VEGFR-1 traps the main 

angiogenic ligand VEGF-A from VEGFR-2 and 

displays a negative regulatory role against VEGFR-

2-induced blood vessel sprouting. Alternatively, 

VEGFR-2/VEGFR-3 heterodimerization is an 

additional signal to facilitate this sprouting. 

Moreover, VEGFR-3 homodimers mediate 

lymphogenesis. So, a defective VEGFR-3 cascade 

results embryonic death (Leppänen et al. 2013; Qiao 

et al. 2006).  

     Considering the fact that classical anti-VEGF 

compounds are clinically administrated to prevent 
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particular disease (cancer, retinopathy, 

endometriosis, and so forth)-associated 

neovascularization, the discovery of detailed 

molecular mechanisms of blood vessel formation is 

essential to design advanced anti-angiogenic 

remedies (Hegde et al. 2018; Ma & Ning 2019). 

     The glycome is the entire complement of sugars, 

whether free or present in more complex molecules 

of an organism. Glycomics is a comprehensive and 

multi-aspect study of glycome (Rudd et al. 2017). 32 

types of sugar linkages were reported in various 

Saccharides. These building blocks can increase the 

degree of complexity. Sugar structures, are highly 

branched. Glycans are highly dynamic as they can 

bound to proteins or conjugate with lipids to form 

modified structures (Aizpurua-Olaizola et al. 2018). 

Glycans play significant roles during viral/bacterial 

recognition, cell signaling events, intrinsic immunity 

modulation, prohibition of cell proliferation, cancer 

expansion, cell fate determination, invasion, 

circulation arrangement, protein folding and other 

important biological procedures (Aizpurua-Olaizola 

et al. 2018; Rudd et al. 2017). Hence, glycomics is 

widely applicable in the clinic as it was reported 

previously (Reid et al. 2012). 

     Currently, we know that glycosylation facilitates 

signal transfer from the surrounding 

microenvironment to inside the cell. The structure of 

carbohydrates has direct impact on ligand/receptor 

binding, dimerization, and internalization of various 

signaling complexes, and, thus activation of 

different cell receptors. RTKs are the most prevalent 

type of Asparagine (N)-linked glycans that transduce 

signals which are important for cell 

communications. Accordingly, it could be 

concluded that VEGFRs mediate main functional 

properties of the vascular endothelial cells during 

angiogenesis. There are 13, 18, and 12 N-

glycosylation sites with different carbohydrate side-

chains in VEGFR-1, -2, and -3, respectively 

(Contessa et al. 2010; Itkonen and Mills 2013; 

Lopez-Sambrooks et al. 2016). Although it has not 

been fully understood so far, these sugar residues, 

which are not completely detected in crystal 

structures, may also affect the conformational 

features of VEGFRs. Therefore, comprehending the 

effects of the sugar structures on the binding of a 

candidate drug VEGFRs improves our knowledge 

about the binding mode of action of drug/VEGFRs 

such complexes. also, this direct impact is important 

for a glycomics-based point of view in drug design 

against VEGFRs.  

     Retinoids are physiological derivatives of 

vitamin A which have several positive impacts on 

normal cell growth and differentiation, tissue 

homeostasis, developmental organogenesis, and 

visual performance (Khalil et al. 2017; Mallipattu 

and He 2015; Zhu et al. 2015). However, they may 

have destructive effects on the morphogenesis 

during human embryogenesis (Gudas, 1994; Rönn et 

al., 2015). All retinoids including all-trans (At), 9-

cis (9c), and 13-cis (13c) retinoic acids (RAs) 

emerge more recently as antineoplastic agents. 

Accordingly, on the contrary to the harmful 

influence of At-RA, a main active isomer of RA, 

(Rühl et al. 2018; Tsuji et al. 2015; Hu et al., 2020) 

that frequently causes embryonic death due to 

developmental deformity, it has been used in cancer 

therapy towards acute promyelocytic leukemia 

(Huang et al., 1988) colorectal cancer, pancreatic 

cancer, oral leukoplakia and skin cancer (Applegate 

and Lane 2015; Di Masi et al. 2015; Lodi et al. 2016; 

Moon et al. 1997; Tarapcsák et al. 2017; Uray et al. 

2016; Szymański et al., 2020).  

     Interestingly, although we know that RAs are 

diffusible biomolecules (Minkina et al. 2017) and 

exert their impressions on gene regulation via 

nuclear receptor RAR/RXR. However, several 

studies demonstrated that RAs can tune-up the 

angiogenesis through binding to VEGFRs with an 

unclear pattern (Njar et al. 2019; Simandi et al. 2018; 

Urushitani et al. 2018; Costantini et al., 2020).  

In the present study, via a computational-based 

approach we investigated the binding manner of At-

RA, 9c-RA, and 13c-RA with the extracellular 

regions of three human VEGFRs (R-1, R-2, and R-

3). We found an alternative mechanism which is 

responsible for the VEGFR-mediated inhibitory 

implications of RAs during angiogenesis. 

Furthermore, regarding the importance of VEGFRs’ 

saccharide residues inactivation, we also compared 

the possible binding sites of three isoforms of RAs 

to both glycosylated and unglycosylated crystal 

structures of VEGFRs introduced so far.  

 

Materials and Methods 

 
Preparation of structures 

     Retinoic acids are small biomolecules with an 

average mass of about 300.435 kDa. The structures 

of interest isoforms (At-RA, 9c-RA, and 13c-RA) 

have been retrieved from PubChem database 

(http://pubchem.ncbi.nlm.nih.gov/) in structure-

Data file (SDF) format which is an acceptable input 

for our docking program. Identifier (ID)s of 

retrieved isoforms from public repository were as  
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follows: 6419707; 449171, and 5282379, 

respectively (Dunning 2018). Also, the PDB files of 

human VEGFR1-3 have been obtained from the 

Protein Database (http://www.pdb.org). All 

structures were prepared by WebLab 

(http://weblab.cbi.pku.edu.cn) (Liu et al., 2009) and 

the visual molecular dynamics (VMD 1.9.3) package 

(www.ks.uiuc.edu/Research/vmd/) (Zhang 2015). 

The Swiss-PdbViewer modeling program was 

applied to perform energy minimization of all 

investigated structures 

(http://www.expasy.org/swissmod) (Guex et al. 

2009). As the cut-off for bond, torsion, angle, 

improper angles, non-bounded and electrostatic 

functions was set for 10 Å by default, energy (E) 

exchanges between two steps was stopped below 

0.05 kJ/mol, and the acting forces between any atom 

stopped below 10 Å. 

 

Docking parameters 

     Docking studies were carried out using HEX 8.0 

(http://hexserver.loria.fr), which is an interactive 

molecular graphics program to calculate and display 

feasible docking modes of pairs of protein and ligand 

molecules (Roudini et al. 2020). Moreover, it can 

predict the position of ligand-receptor contacts 

approximately. All docking parameters were left as 

their default values (Pourhashem et al. 2017). 

 

Results 
 

     The molecular structures of retinoic acid isoforms 

including At-RA, 9c-RA, and 13c-RA were 

represented in Figure 1 as they were obtained from 

PubChem. Chemical differences and reactive groups 

are shown for each structure. 

The structural details including PDB IDs, domains, 

length, and glycosylation status of the extracellular 

regions of our studied VEGF receptors are 

summarized in the Table 1. 

In order to minimize the energy of all 3D structures 

prepared by the Web Lab, we performed the energy 

minimization procedure using Swiss-PdbViewer 

(DeepView). The first (E1) and the end (E2) energy 

amounts for each molecule were listed in the Table 

2. Moreover, docking energies obtained for different 

RA-VEGFR complexes using HEX 8.0 were 

described in Table 1. 

     A comparison of assessed docking energies for 

various RA-VEGFR complexes in this work 

indicated that At-RA, 9c-RA, and 13c-RA (-256.10, 

-256.11, and -248.56 kJ/mol, respectively) are 

highly bound to VEGFR-3 4BSK (Table 1). This is 

also occurred at different amino acid residues in 

VEGFR-3 D2 (OA-133: ARG-CA to OA-190: 

GLY-CA) (Figure 2).  

     Besides, our ligands can attach to other 

investigated structures with lower tendencies and 

they have the lowest binding mode in complex with 

VEGFR-1 D2 (1QTY), as demonstrated in Table 1. 

Also, we found At-RA, 9c-RA, and 13c-RA bind 

slightly to VEGFR-2 and VEGFR -1 D3 (residues 

from [O] R-143: ASN-CA to [O] R-278: LYS-CA 

and [O] X-241: LYS-CA to [O] X-331: LYS-CA, 

respectively) (Figure 2). In addition, as it was 

demonstrated in Figure 3 regarding the trends of 

binding energies for RA-VEGFR complexes, a 

decreased binding mode was detected for VEGFR-1 

D3 (5T89) in comparison to VEGFR-2 D3 (2X1X) 

and also for VEGFR-2 D3 (2X1X) in comparison to  

 

 
 

Figure 1. Schematic structural representation of retinoic acid isoforms including all-trans (At), 9-cis (9c), and 13-

cis (13c) retinoic acids (RAs). At-RA is the main active isomer of RA (http://pubchem.ncbi.nlm.nih.gov/). 
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Table 1. Structural details (Chain, Domain, Glycosylation status) for VEGFRs and docking simulations for RAs-

VEGFRs. 

Receptors PDB 

IDs 

Chain Domain 

(amino acid 

positions) 

Glycosylation status Docking Energy (kJ/mol) 

 

Sugars and aa positions 
Number of 

glycosylation 

sites 

At-RA 9c-RA  13c-RA  

VEGFR1 1FLT 95aa 
(Phe X135-
Thr X226) 

D2 
(aa151 –
aa 214) 

- - -228.38 -223.9 -209.82 

1QTY 101aa 
(Phe T135-

Gln T225) 

D2 
(aa151 –

aa 214) 

- - -15.76 -17.29 -18.19 

5T89 646aa 
(Asp 31-Thr 

Y654) 

D1 

(aa32-aa123), 

D2 
(aa151-aa214), 

D3 
(aa230-aa327), 

D4 
(aa335-aa421), 

D5 

(aa428-aa553), 

D6 
(aa556-aa 654) 

ASN X 100 (NAG X 701 
& NAG X 702), ASN X 

196 (NAG X 703), ASN X 

251 (NAG X 704), ASN X 
323 (NAG X 705), ASN X 

402 (NAG X 706), ASN X 

417 (NAG X 707 & NAG 
X 710),  

ASN X 574 (NAG X 708), 

ASN X 625 (NAG X 709) 
/ ASN Y 100 (NAG Y 

701), ASN Y 164 (NAG Y 

702), ASN Y 196 (NAG Y 
703 & NAG Y 704), ASN 

Y 251 (NAG Y 705), ASN 

Y 402 (NAG Y 707), ASN 
Y 417 (NAG Y 708), ASN 

Y 547 (NAG Y 709), ASN 

Y 625(NAG Y 710) 

 
 

 

 
 

 

 
 

16 

-217.79 -231.50 -218.01 

VEGFR2 2X1W 213aa 
(Phe L 125-
Glu L 326) 

D2 

(aa141-aa207), 

D3 
(aa224-aa320) 

ASN L 143 (NAG L 

2401), ASN L 245 (NAG 

L 2601 & NAG L 2602), 
ASN L 318 (NAG L 

2701)/ ASN M 245 (NAG 

M 1201 & NAG M 1201), 
ASN M 318 (NAG M 

1301, NAG M 1302 & 

BMA M 1303)/ ASN N 
143 (NAG N 1401), ASN 

N 245 (NAG N 1601), 

ASN N 318 (NAG N 1701 
& NAG N 1702)/ ASN O 

143 (NAG O 2001), ASN 

O 158 (NAG O 2101), 
ASN O 245 (NAG  O 2201 

& NAG O 2202), ASN O 

318 (NAG O 2301). 

 

 

 
 

 

 
 

12 

-244.06 -244.45 -241.28 

2X1X 213aa 
(Pro R124-

Glu R326) 

D2 
(aa141-aa207), 

D3 
(aa224-aa320) 

ASN R 143 (NAG R 404), 

ASN R 245 (NAG R 402 

& NAG R 403), ASN R 
318 (NAG R 405 & NAG 

R 406). 

 

3 
-251.99 -245.43 -242.62 

3KVQ 108aa 
(Ile A669-
Gly A756) 

D7 
(aa667-aa753) 

- - -241.31 -247.96 -240.43 

3V6B 424aa 
(His R131-

Phe R329) 

D2 
(aa141-aa207), 

D3 
(aa224-aa320) 

- - -189.43 -206.67 -186.63 

VEGFR3 4BSJ 232aa 
(Asp A328-

His A554) 

D4 

(aa331-aa415), 

D5 
(aa422-aa552) 

ASN A 411 (NAG A 601), 

ASN A 515 (NAG A 602) 

 

2 
-51.50 -49.20 -43.38 

4BSK 214aa 
(Pro A30-Ile 

A224) 

D1 

(aa30-aa127), 

D2 
(aa151-aa213) 

ASN A 33 (NAG A 301), 

ASN A 104 (NAG A 302), 
ASN A 166 (NAG A 303) 

 

3 
-256.10 -256.11 -248.56 

*ASN: Asparagine 

* NAG: N-acetyl glucose 
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Table 2. Energy minimization (first and end energy) for VEGFRs. 

Receptor PDB IDs Chain E1 (first energy minimization 

kJ/mol) 

E2 (end energy minimization 

kJ/mol) 

VEGFR1 

 

1FLT X, Y -6040.213 -10363.84 

1QTY T, U, X, Y -4588.174 -22151.435 

5T89 X, Y -40754.605 -71025.164 

VEGFR2 

 

2X1W L, M, N, O -23284.633 -37331.891 

2X1X R +343794.188 -11717.921 

3KVQ A -1688.371 - 4945.834 

3V6B R -2886.585 -10666.744 

VEGFR3 4BSK A 16982.123 -9005.400 

4BSJ A -7782.256 -12937.562 
 

 
Figure 2. Docking of three retinoid types (At-RA, 9c-RA, and 13c-RA) with VEGFR-1, 2, and 3 complexes: A1-3, 

B1-3, and C1-3 are docking results of retinoid types with VEGFR-1 (PDB-ID 5T89), VEGFR-2 (PDB-ID 2X1X), and 

VEGFR-3 (PDB-ID 4BSK), respectively. RA isoforms differentially bind to different domains of VEGFRs. 
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Figure 3. Docking energy amounts are shown for various complexes of At-RA, 9c-RA, and 13c-RA isoforms with 

different VEGF receptors, including VEGFR-1 D3 (5T89), VEGFR-2 D3 (2X1X), and VEGFR-2 D3 (2X1X). 

 

VEGFR-3 D2 (4BSK) in a gradual mode in case of 

9cRA isoform. A similar trend was observed for both 

At-RA and 13-RA isoforms, while differences were 

more remarkable for 5T89 in comparison to 2X1X 

and 4BSK. According to crystal structures of three 

VEGFRs, structures 5T89, 2X1W, and 4BSK, for 

VEGFR-1, -2, and -3, have resolved the higher 

number of carbohydrate residues among other 

structures studded up-to-now, respectively (Table 

1). Considering the glycosylated VEGFR-2 

structures, 2X1W (with a higher glycosylation 

status) has a lower docking tendency (At-RA: -

244.06; 9c-RA: -244.45; 13c-RA: -241.28, kJ/mol) 

in comparison to a less glycosylated structure 2X1X 

(At-RA: -251.99; 9c-RA: -245.43; 13c-RA: -242.62, 

kJ/mol). These observations were not confirmed for 

other receptors such as glycosylated 2X1X with a 

lower energy versus non-glycosylated 3V6B with a 

higher energy (Table 1). 

 

Discussion 
     The regulatory function of the VEGF signaling 

system has comprehensively been established in 

normal de novo and pathological revascularization. 

This cascade is modulated by the activation of 

VEGF receptor family members (VEGFR-1, -2, and 

-3). VEGFR-2 triggers the blood vessels 

organization whereas VEGFR-1 plays a negative 

feedback for VEGFR-2 function (Greenberg et al. 

2008; Stuttfeld and Ballmer‐Hofer 2009). In 

VEGFR-3-related signaling pathways, VEGFR-3 

(only) induces lymphatic vascularization and also in 

co-operation with VEGFR-2 mediates blood 

angiogenesis (Leppänen et al. 2013). These trans-

membrane RTKs have seven extra-cellular 

immunoglobulins (Ig)-like domains (D1-7) and their 

activation process involves the ligand binding 

through D1-3, dimerization through D4-7, and auto-

phosphorylation of the cytoplasmic kinase domains. 

The ligand-mediated induction mode via a 

membrane-distal domain 2 (D2) is conserved for all 

VEGF receptors. Additionally, for both VEGFR-1 

and 2, D3 (not mainly) is used for ligand attachment 

(Leppänen et al. 2010; Leppänen et al. 2013; 

Markovic-Mueller et al. 2017).  

     Recent studies disclose the potential of retinoids 

to interrupt with angiogenic processes. Weninger et 

al. in 1993 illustrated that retinoids are potent 

inhibitors of VEGF/VPF production by normal 

human keratinocytes. These cells may contribute to 

the therapeutic effects of retinoids (Weninger et al. 

1998). Also, in 2007 Noonan et al. showed that the 

synthetic retinoid 4-hydroxy fenretinide (4HPR) 

displays anti-angiogenic effects (Noonan et al. 

2007). In addition, microarray data by Albini et al. 

demonstrated that some anti-angiogenic agents, such 

as N‑acetyl-cysteine and 9c-RA, induce molecular 

indices in endothelial cells which mimic in vitro 

senescence (Albini et al. 2012). Tsuji et al. showed 

evident data for the binding of retinoic acid isomers 

(At-RA, 9c-RA, and 13c-RA) with RXRs and RARs 

(Tsuji et al. 2015). Moreover, Zhong et al. confirmed 

that CYP26C1 is a 4-oxo-atRA hydroxylase and 

probably be important for adjusting the condensation 

of active retinoids in human tissues (Zhong et al. 

2018). 

     Taken together, there is no clear data indicating 

that how RAs affect VEGFRs from outside the cell. 
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Here for the first time, the binding patterns of RAs 

with VEGFRs were clarified using a docking-based 

approach. Results revealed that all three RA isomers 

(At-, 9c-, and 13c-RA) can remarkably bound to 

VEGFR-3. In comparison to interactions with other 

domains, RAs have a higher affinity to D2 in 

VEGFR-3 (Figure 2). This may suggest a novel 

mechanism for these agents which targets the 

vasculature, especially through the ligand (VEGF-C) 

detachment from its respective receptor which leads 

to the lymph/blood vessels deterioration. These 

biomolecules can also interfere with blood vessels 

formation through the inhibition of VEGF-A-

VEGFR-2 and (with a lower affinity) VEGFR-1 

(Table 1). Although RAs may have strong contacts 

with similar domains, as depicted in VEGFR-3 D2 

(Figure 2) or VEGFR-1/-2 D3 (Figure 2), they can't 

interact with similar residues, may be owing to 

variations in RA isomers (Figure 1). Actually, 

structural remodeling for receptor dimerization in 

D4-7 could not be sharply affected by RAs, 

considering the competed energies which were 

demonstrated in Table 1. As the kinase activity of 

VEGFRs is fundamentally concerted by their 

glycosylation status (Gomes Ferreira et al. 2018), 

their glycosylated 3D structures were also 

considered in the current study. In this regard, 

glycosylation may lead to a lower affinity of RAs for 

VEGFR-2 (2X1W) when compared with 2X1X. 

Conversely, glycosylation may affect the 5T89 

folding in a way that different modes achieve in RA-

VEGFR-1 docking assessments. These 

inconsistencies in binding energies between 

glycosylated and unglycosylated structures suggest 

that sugar residues can alter the ligand-binding 

manners. Accordingly, post-translational 

modifications like glycosylation should be 

considered in such docking studies to reach a reliable 

behavior. It implies the importance of glycomics-

based approaches in ligand/receptor binding studies. 

     Taking a computational analysis, instead of a real 

experiment, is easy and cost-benefit, though, 

validation of the outputs by real experiments are 

inevitable. It is clear that all factors applied during 

simulations are based on approximation and are 

under control by users. Currently, by advances in 

computational biology docking of several thousands 

of ligands were performed which can be applied in 

pharmaceutical industries to design improved 

structure-dependent drugs (Yadav et al. 2018). 

Nevertheless, we can have a better interpretation of 

the applications of RAs in tissue regeneration, 

wound repair, and cancer therapy or other VEGF-

associated system uses in the future. thus, molecular 

dynamics and experimental analysis in further 

investigations may confirm our findings. 
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