Chromosome number reports in five *Onobrychis* species (*O*. sect. *Onobrychis*, Fabaceae) in Iran

Roya Karamian*, Massoud Ranjbar and Anahita Hadadi

Department of Biology, Faculty of Science, Bu-Ali Sina University, P. O. Box 65175/4161, Hamedan, Iran

Received 12 September 2011 Accepted 15 November 2012

Abstract

In this study the original mitotic chromosome counts are presented for 5 *Onobrychis* species of *O*. sect. *Onobrychis* in Iran, 2n = 2x = 14 for *O*. *persica*, 2n = 4x = 28 for *O*. *viciifolia*, 2n = 4x = 28 for *O*. *altissima*, 2n = 2x = 14 for *O*. *shahpurensis* and 2n = 2x = 14 for *O*. *sosnovskyi*. The basic chromosome numbers of all studied taxa are consistent with the proposed base number of x = 7. In addition, the meiotic chromosome number of 2n = 4x = 28 for *O*. *viciifolia* and *O*. *altissima* and of 2n = 2x = 14 for *O*. *sosnovskyi* and *O*. *persica* are reported here. This study is the first report on the chromosome counts of *O*. *persica* and *O*. *shahpurensis*. All studied taxa displayed regular bivalent pairing and chromosome segregation at meiosis. However, some abnormalities were observed in the taxa are discussed.

Keywords: chromosome number, Fabaceae, meiotic behavior, mitosis, *Onobrychis*, Iran

Introduction

Onobrychis Miller comprises of about 170 species under 12 higher taxa mainly distributed in southwest Asia, the Mediterranean region, temperate Europe and Asia, a few of which are cultivated as fodder or as ornamentals (Lock and Simpson, 1991; Yakovlev et al., 1996; Mabberley, 1997). Boissier (1872) subdivided the genus *Onobrychis* into two sections, *Euonobrychis* Bunge and *Sisyrosema* Bunge, based on characters of indumentums and corolla. He accepted 24 species within these 2 sections. In ‘Flora Iranica’ (Rechinger, 1984) 54 species from Iran were treated under 8 sections, *Dendrobychis*, *Lophobrychis*, *Onobrychis*, *Laxiflorae*, *Anthyllium*, *Afghanicae*, *Heliobrychis* and *Hymenobrychis*. The taxonomy of the genus continues to be subject of much confusion, mainly because of the different approaches to species delimitation, resulting in varying numbers of recognized species (Boissier, 1872; Sirjaev, 1925; Hedge, 1970; Ball, 1978; Duman and Vural, 1990; Aktoklu, 2001). Recently, some new taxa of the genus have been described from Iran (Ranjbar et al., 2004, 2007; Ranjbar, 2009; Ranjbar et al., 2009a, 2009b, 2010a, 2010b, 2010c, 2010d, 2010e, 2010f, 2011).

Most of the cytological studies in the genus have concentrated on the chromosome count (Balitsberger, 1991; Karshibaev, 1992; Slavivk et al., 1993), with little work focused on detailed karyological criteria for taxonomic purposes (Khatoon et al., 1991; Mesicek and Sojak, 1992). From these reports, it is evident that the chromosome count is known for just over a quarter of the species. Two basic chromosome numbers (x = 7 and x = 8) and 4 ploidy levels (2n = 2x = 14, 2n = 4x = 28, 2n = 8x = 56 and 2n = 2x = 16, 2n = 4x = 32) are present in the genus (Abou-el-Enain, 2002). The elucidation of the origins of species has been greatly aided in recent years by the ability to make comparisons between putative progenitor species and their derivatives at the molecular level (Crawford, 1990; Avise, 1994). We describe here mitotic chromosome number, and meiotic chromosome number and behavior of 5 *Onobrychis* species of *O*. sect. *Onobrychis* in Iran.

Materials and Methods

For mitosis, 5 *Onobrychis* species, *O*. *persica*, *O*. *viciifolia*, *O*. *altissima*, *O*. *shahpurensis* and *O*. *sosnovskyi*, were collected from different locations in Iran (figure 1) and pods were collected from healthy plants. Voucher specimens were deposited at the Herbarium of the Bu-Ali Sina University (BASU), Hamedan, Iran. Then, pods were left to dry at room temperature, and seeds obtained from dry pods and kept at 4 °C until used. Young root

Corresponding author E-mail: r_karamian@basu.ac.ir
tips were obtained from seeds germinated in petri dishes pretreated with 0.05% colchicine for 3 h and fixed in 3:1 ethanol: glacial acetic acid for 24 h. Root tips were hydrolyzed for 6 min in 1M HCl at 60 °C, washed briefly in dd H2O and stained in Feulgen’s solution for 1-2 h. All permanent slides were made using Venetian turpentine (Wilson, 1945). The slides were observed under an Olympus BX-41 photomicroscope.

Also the chromosome number and meiotic behavior were analyzed in all above mentioned species. 15 flower buds from at least 5 plants at an appropriate stage of development were fixed in Piennr’s fluid containing ethanol (96%), chloroform and propionic acid, 6:3:2 (v/v/v), for 24 h at room temperature and then stored in 70% alcohol at 4 °C until used. Anthers were squashed and stained with 2% acetocarmine. All permanent slides were made using Venetian turpentine (Wilson, 1945). Photographs of chromosomes were taken by Olympus BX-41 photomicroscopes at initial magnification of 1000X. Chromosome counts were made from well-spread metaphases in intact cells, by direct observation and from photomicrographs.

Results

Mitotic chromosome number and ploidy level

Results from the present study showed that O. viciifolia and O. altissima are tetraploid with the base number of 2n = 4x = 28 (figures 2A-2F), while O. shahpurensis, O. persica and O. sosnovskyi are diploid with the base number of 2n = 2x = 14 (figures 2G-2T).

Onobrychis altissima Grossh. in Sc. Papers Applied Sect. Tiflis Bot. Gard. Pt. V. 141 (1929), Iran: East Azerbaijan, 10 km after Varzaghan, Mirzaali Kandi, 2010 m, Ranjbar and Hadadi 14209. Perennial herbs, stems erect or erect-ascending, 50-90 cm tall, corolla pink, 10-13 mm long, standard dark and wings short. It is closely related to O. viciifolia growing throughout Iran especially in the shape of leaf, stem indumentum, number of leaflets and flowers and also in the length of standard, keel and pod. O. altissima is tetraploid with the base number of 2n = 4x = 28.

Onobrychis viciifolia Scop. Fl. Carniol., ed. 2. 2:76 (1772).

Iran: West Azerbaijan, Orumieh to Oshnavieh, after Sangar, 1650 m, Ranjbar and Hadadi 14214. Perennial herbs, stems erect or erect-ascending, 50-90 cm tall, corolla pink, 10-13 mm long, standard dark and wings short. O. viciifolia is tetraploid with the base number of 2n = 4x = 28.

Onobrychis sosnovskyi Grossh. in Sc. Papers Applied Sect. Tiflis Bot. Gard. Pt. V. 162 (1926), Iran: East Azerbaijan, Marand and Kharvanak, 1215-1725 m, Ranjbar and Hadadi 14208 and 1412. Perennial plant, (20) 40-60 cm height; stem erect, branched; corolla pink, 9-11 mm long. This species occurs in Turkey, Iran and Caucasus. It is the only long wing species in northwest Iran. This diploid species shows the basic chromosome number of 2n = 2x = 14 (figures 2G-2J).

Onobrychis persica Sirj. and Rech. f. Repert. Spec. Nov. Regni Veg. 50: 257 (1941). Iran: Zanjan, Zanjan to Gheidar, 1950 m, Ranjbar and Hadadi 14197. Perennial plant, 20-50 cm height; corolla pink, 8-9 mm long. It is one of the short wing species in the west of Iran that is diploid and shows the basic chromosome number of 2n = 2x = 14 (figures 2O-2S).

Onobrychis shahpurensis Rech. f. Fl. Iranica [Rechinger] 157: 414 (1984). Perennial plant, 25-40 cm tall; corolla white, 8.5-9.5 mm long. It is the only short wing species with white flowers in the Flora Iranica grows in west Iran. It is a diploid species with 2n = 2x = 14 chromosome number (figures 2K-2N).

Meiotic behavior and abnormalities

Chromosome number and meiotic behavior were determined in 16 populations of 5 species. A summary of their cytological features is given in table 2, and the chromosomes are illustrated in figures 3–7. A total of 5130 diakinesis/metaphase I (D/MI), 2395 anaphase I/telephase I (AI/TI), 1350 metaphase II (MII) and 7263 anaphase II/telephase II (AII/MII) cells were analyzed. The meiotic irregularities observed in the Onobrychis species studied here included the occurrence of varied degrees of sticky chromosomes, formation of laggards and bridge in anaphase I & II, telophase I and II, cytomixis, cytoplasmic connections, desynapsis in metaphase I and asynchronous nuclei in metaphase II (figures 3-7).
Figure 1. Distribution of *O. viciifolia* (★), *O. altissima* (●), *O. sosnovskyi* (▲), *O. persica* (♦) and *O. shahpurensis* (■) in Iran.

Figure 2. (A − T) Representative mitotic cells in different *Onobrychis* species: (A) Prophase in *O. viciifolia* (14214) (2n = 4x = 28), (B, C) Prometaphase in *O. viciifolia* (14214), (D) Metaphase in *O. altissima* (14209) (2n = 4x = 28), (E) Prophase in *O. altissima* (14209), (F) Prometaphase in *O. altissima* (14209), (G) Prometaphase in *O. sosnovskyi* (14208) (2n = 2x = 14), (H) Prometaphase in *O. sosnovskyi* (14212), (I) Metaphase in *O. sosnovskyi* (14212), (J) Anaphase in *O. sosnovskyi* (14208), (K) Telophase in *O. shahpurensis* (14213) (2n = 2x = 14), (L, M) Metaphase in *O. shahpurensis* (14213), (N) Anaphase in *O. shahpurensis* (14213), (O) Telophase in *O. persica* (14197) (2n = 2x = 14), (P) Prophase in *O. persica* (14197), (Q) Prometaphase in *O. persica* (14197), (R) Metaphase in *O. persica* (14197), (S, T) Anaphase in *O. persica* (14197). Scale bars = 3 µm.
Chromosome number reports in five Onobrychis species

Figure 3. (A – O) Representative meiotic cells in *O. altissima* (2n = 4x = 28): (A) Pachytene (14202), (B) Metaphase I showing 14 bivalents and 1 B-chromosome (14202), (C) Metaphase II (14209), (D) Early metaphase I (14204), (E) Telophase I with laggard chromosomes (14204), (F) Early metaphase I (14192), (G) Anaphase I (14192), (H) Early metaphase I (14201), (I) Cytomixis (14537), (J) Fragmented chromosomes in metaphase I (14537), (K) Laggard chromosome in anaphase I (14537), (L) Bridge in telophase I (14537), (M) Cytomixis (14556), (N) Asynchronous nucleus in metaphase II (14556), (O) Cytomixis in telophase II (14556). Scale bars = 3 µm.

Anaphase and telophase laggard chromosomes

In this study only Kaleibar population (14204) of *O. altissima* and two populations of *O. viciifolia* showed formation of laggard chromosomes from anaphase I to telophase II (figures 3E, 3K, 7B, 7E and 7F), while other populations studied here did not form any laggard chromosomes. The highest percentage of AI/TI cells with laggard chromosomes occurred in Taham population (14198) of *O. viciifolia* (table 2).

Chromosome stickiness

Chromosome bridges resulting from stickiness were observed in anaphase I and II as well as telophase I and II stages in *O. viciifolia*, *O. altissima*, *O. shahpurenensis* and *O. sosnovskyi* (figures 3L, 4F, 4G, 5F, 6B, 6D, 6F, 6I and table 2).

Desynapsis

A complete desynapsis was observed only in Taham population (14198) of *O. viciifolia* (figure 7H and table 2) and Gheidar population (14197) of *O. persica* (figure 4J and table 2).

Cytomixis

The chromatin/chromosome migration occurred in different directions from early prophase to telophase in some *Onobrychis* species and populations studied (figures 3I, 3M, 3O, 5K, 6B, 7K and table 2).

B-chromosomes

B-chromosomes or accessory chromosomes only was observed (10.64%) in Ardebil population (14202) of *O. altissima* (figure 3B and table 2).
Figure 4. (A – L) Representative meiotic cells in *O. persica* (14197) (2n = 2x = 14): (A) Zygotene, (B) Pachytene, (C) Late pachytene, (D) Diakinesis showing 7 bivalents, (E) Metaphase I, (F) Metaphase I with fragmented chromosomes, (G) Early anaphase I, (H) Anaphase I, (I) Telophase I, (J) Anaphase I and desynapsis in metaphase I and 14 monovalents, (K) Metaphase II, (L) Telophase II. Scale bars = 3 µm.

Discussion

Mitotic chromosome number and ploidy level

According to Abou-el-Enain (2002), two basic chromosome numbers (*x* = 7 and *x* = 8) and four ploidy levels (*2n* = 2x = 14, *2n* = 4x = 28, *2n* = 8x = 56, *2n* = 2x = 16 and *2n* = 4x = 32) are present in the genus *Onobrychis*. Results from the present study showed that *O. viciifolia* and *O. altissima* are tetraploid with the base number of *2n* = 4x = 28, while *O. shahpuresis*, *O. persica* and *O. sosnovskyi* are diploid with the base number of *2n* = 2x = 14. *O. altissima* and *O. viciifolia* behave as monocarpic perennials in their natural habitats. The comparative biology of *O. viciifolia* and *O. altissima* has led to the hypothesis that these two species have a progenitor-derivative relationship with the former species having differentiated from the latter. However, *O. viciifolia* differs from it by having small teeth on the crest of pod and wings shorter than 3 mm. One ploidy level (*2n* = 4x = 28) for *O. viciifolia*, and two ploidy levels (*2n* = 2x = 14 and *2n* = 4x = 28) for *O. altissima* have been perviously reported (Takhtajan, 1990).

Meiotic behavior and abnormalities

The meiotic irregularities observed in the studied *Onobrychis* species showed variation and included the occurrence of varied degrees of sticky chromosomes, formation of laggards and bridge in anaphase I and II, telophasse I and II, cytomixis, cytoplasmic connections, desynapsis in metaphase I and asynchronous nuclei in metaphase II. Such irregularities have been also reported previously for *O. viciifolia* and *O. altissima* of this section and also in *O. chorassanica* of *O*. sect. *Hymenobrychis* (Ranjbar et al., 2009a, 2010b, 2010c, 2010d, 2011).
Anaphase and telophase laggard chromosomes

Laggards and non-oriented chromosomes may produce micronuclei, if they fail to reach the poles in time to be included in the main telophase nucleus (Koduru and Rao, 1981; Utsunomiya et al., 2002), leading to the formation of micro-pollen and, probably, to gametes with unbalanced chromosome numbers (Mansuelli et al., 1995). Non-oriented bivalents may be related to impaired attachment of kinetochores to the spindle fibers (Nicklas and Ward, 1994). It has been suggested that infertility in polyploids is not solely due to the production of aneuploid gametes formed by improper segregation of chromosomes during anaphase/telophase stages, the genetic factors may also bring about pollen sterility as evidenced in different tetraploid species (Hazarika and Rees, 1967; Pagliarini, 1990, 2000; Baptista-Giacomelli et al., 2000).

Figure 5. (A – K) Representative meiotic cells in *O. shahpurensis* (19182) (2n = 2x = 14): (A) Zygotene, (B) Diakinesis showing 7 bivalents, (C) Metaphase I, (D) Early anaphase I, (E) Anaphase I, (F) Bridge in anaphase I, (G) Bridge in late anaphase I, (H) Telophase I, (I) Anaphase II, (J) Telophase II, (K) Cytomixis in telophase II and pentapolar cells. Scale bars = 3 µm.
Table 1. Taxa and acronyms examined in this study.

<table>
<thead>
<tr>
<th>Species</th>
<th>Voucher No.</th>
<th>Locality</th>
<th>Alt. (m)</th>
<th>Collector name</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. viciifolia</td>
<td>BASU 14214</td>
<td>West Azerbaijan: Orumieh to Oshnavieh, after Sangar</td>
<td>1650</td>
<td>Ranjbar & Hadadi</td>
</tr>
<tr>
<td>O. viciifolia</td>
<td>BASU 14198</td>
<td>Zanjan: Taham</td>
<td>2000</td>
<td>Ranjbar & Hadadi</td>
</tr>
<tr>
<td>O. viciifolia</td>
<td>BASU 14529</td>
<td>East Azerbaijan: Hashشروod to Maraghe, 70 km to Maraghe</td>
<td>1529</td>
<td>Ranjbar & Hadadi</td>
</tr>
<tr>
<td>O. viciifolia</td>
<td>BASU 14544</td>
<td>Tehran: Polur to Firuzkuh, 5 km after railway</td>
<td>1571</td>
<td>Ranjbar & Hadadi</td>
</tr>
<tr>
<td>O. viciifolia</td>
<td>BASU 14527</td>
<td>East Azerbaijan: Hashشروod to Maragheh, 80 km to Maragheh</td>
<td>1617</td>
<td>Ranjbar & Hadadi</td>
</tr>
<tr>
<td>O. shahpurensis</td>
<td>BASU 14213</td>
<td>West Azerbaijan: Salmas to Orumieh, Ghooshchi neck</td>
<td>1870</td>
<td>Ranjbar & Hadadi</td>
</tr>
<tr>
<td>O. shahpurensis</td>
<td>BASU 19182</td>
<td>West Azerbaijan: Salmas to Kozerash, Kozerash</td>
<td>2225</td>
<td>Ranjbar & Hadadi</td>
</tr>
<tr>
<td>O. sosnovskyi</td>
<td>BASU 14208</td>
<td>East Azerbaijan: Kharvanak</td>
<td>1215</td>
<td>Ranjbar & Hadadi</td>
</tr>
<tr>
<td>O. sosnovskyi</td>
<td>BASU 14212</td>
<td>East Azerbaijan: 16 km to Marand</td>
<td>1725</td>
<td>Ranjbar & Hadadi</td>
</tr>
<tr>
<td>O. altissima</td>
<td>BASU 14209</td>
<td>East Azerbaijan: 10 km after Varzaghan, Mirzaali Kandi</td>
<td>2010</td>
<td>Ranjbar & Hadadi</td>
</tr>
<tr>
<td>O. altissima</td>
<td>BASU 14202</td>
<td>Ardehli: Ardehli</td>
<td>1540</td>
<td>Ranjbar & Hadadi</td>
</tr>
<tr>
<td>O. altissima</td>
<td>BASU 14201</td>
<td>Ardehli: Saein neck</td>
<td>1770</td>
<td>Ranjbar & Hadadi</td>
</tr>
<tr>
<td>O. altissima</td>
<td>BASU 14204</td>
<td>East Azerbaijan: Kaleibar</td>
<td>1650</td>
<td>Ranjbar & Hadadi</td>
</tr>
<tr>
<td>O. altissima</td>
<td>BASU 14537</td>
<td>East Azerbaijan: Khoy, Ghotor road, 2 km to Darekhan</td>
<td>1357</td>
<td>Ranjbar & Hadadi</td>
</tr>
<tr>
<td>O. altissima</td>
<td>BASU 14556</td>
<td>Khorasan: Bojnourd to Esfarayen, Assadly neck</td>
<td>1800</td>
<td>Ranjbar & Hadadi</td>
</tr>
<tr>
<td>O. persica</td>
<td>BASU 14197</td>
<td>Zanjan: Gheidar</td>
<td>1950</td>
<td>Ranjbar & Hadadi</td>
</tr>
</tbody>
</table>

Figure 6. (A − I) Representative meiotic cells in *O. sosnovskyi* (2n = 24x = 14): (A) Zygotene (14208), (B) Cytomixis in zygotene (14208), (C) Diakinesis (14208), (D) Diakinesis showing 7 bivalents and (14212), (E) Metaphase I with fragmented chromosome (14212), (F) Bridge in anaphase I (14212), (G) Telophase I (14212), (H) Asynchronous nucleus in metaphase II, (I) Telophase II. Scale bars = 3 µm.
Figure 7. (A – O) Representative meiotic cells in *O. viciifolia* (2n = 4x = 28): (A) Early metaphase I (14198), (B) Bridge and laggard anaphase I (14198), (C) Asynchronous nucleus in metaphase I (14198), (D) Fragmented chromosomes metaphase I (14529), (E) Laggard chromosomes in anaphase I (14529), (F) Laggard chromosomes in telophase I (14529), (G) Bridge in telophase I (14529), (H) Asynchronous nucleus in metaphase II (14544), (I) Desynapsis (14544), (J) Bridge in anaphase I (14544), (K) Metaphase I (14527), (L) Cytomixis and laggard chromosomes in metaphase II (14527), (M) Fragmented chromosome in metaphase I (14527), (N) Anaphase II, (O) Telophase II (14527). Scale bars = 3 µm.
Table 2. Meiotic behavior in different populations of *O. vicifolia*, *O. altissima*, *O. shahpurensis*, *O. sosnovskyi*, and *O. persica*.

Taxa	sos	sos	shp	alt	vic	per											
	14208	14121	14182	14202	14201	14204	14209	14537	14556	14527	14554	14529	14214	14199	14198	14197	
% Z/P	42.3	26.24	52.7	9.88	17.25	33.14	54.72	66.95	30.37	52.15	70.83	3.27	31.85	9.07	66.9	54.49	
% Cytomixis/Cytoplasmic connection	3.33	0	0	0	3.1	0.19	5.01	4.87	5.17	2.45	4.52	13.78	0	5.25	2.96		
% D/M I	30.12	20.28	18.9	25.97	28.18	13.31	1.31	19.52	4.9	10.45	18.4	14.73	18.12	4.47	12.91	21.03	
% Fragmented / Forward chromosome	2.12	0	0.81	0	0	0	0	2.26	2.36	0	0.67	9.47	2.5	0	0	3.94	
0%0 A/I/T I	3.16	9.16	6.95	9.2	22.07	2.91	8.3	8.41	10.51	3.71	3.91	3.61	11.19	7.03	8.4	3.95	
% Cytomixis/Cytoplasmic connection	0	0	0	7.31	0	0	10.52	17.67	0.09	0	13.33	20.6	12.7	6.21	1.6		
% Laggard chromosome	2.12	0	0.43	0	0	7.69	3.67	2.67	5.45	4.82	10.11	0.26	5.45	17.51	2.12		
% DS	1.1	0	0	0	0	0	0	0	1.12	0	0	0	0	1.06			
% PII	5.45	0	7.89	17.88	1.28	6.47	10.88	11.5	9.32	10.79	0.62	6.98	10.56	14.7	1.8	4.59	
% Cytomixis/Cytoplasmic connection	26.2	0.83	5.43	8.33	0.16	15.76	20.56	11.8	0	17.93	19.68	8.69	21.05	29.3			
% MII	1.58	2.22	0.66	2.61	4.39	2.69	5.28	3.8	13.55	5.53	0.06	0.62	5.01	3.7	0.47	1.69	
% Cytomixis	0	0	7.31	0	0	0.2	3.48	7.92	3.65	0	15.38	16.8	7.6	0	2.04		
% Laggard chromosome	0	0	0	0	0	0	0	1.97	7.31	0	0	16	0	0	0		
% Asynchronous nucleus	35.7	4	0	26.8	17.14	0	9.09	2.32	10.06	9.75	0	0	0	0.6	14.28		
% Cytomixis/Cytoplasmic connection	6.32	2.07	0	1.6	10.8	10.8	3.18	12.29	8.56	12.48	0	1.25	18.19	2.08	0	5.7	
% Laggard chromosome	0.84	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
N	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Ploidy	2	2	2	4	4	4	4	4	4	4	4	4	4	4	4	2	

Abbreviations: Z/P = Zygotene/Pachytene; D/MI = Diakinesis/Metaphase I; n = Chromosome number; Al/TI = Anaphase I/Telophase I; PII = Prophase II; MII = Metaphase II; Al/TI = Anaphase II/Telophase II.
Chromosome stickiness

Sticky chromosomes were observed from early stages of prophase till the final stages of meiosis in some populations studied. The thickness of bridges observed and the number of chromosomes involved in their formation varied among different meiocytes and the species studied. Chromosome stickiness may be caused by genetic and environmental factors, and several agents have been reported to cause chromosome stickiness (Pagliarini, 2000).

Desynapsis

Desynapsis occurs either due to the action of recessive ds genes in a homozygous situation or early chiasma terminalisation which may lead to the formation of meiocytes with double normal chromosome number. In several cases such univalents may have difficulty during anaphase I movement and become lagged therefore producing aneuploid gametes causing reduction in pollen fertility of plants. However, they may skip the first anaphase and form restitution nucleus resulting in the formation of unreduced gametes as reported in some other species (Veilleux, 1985; Sheidai et al., 2006, 2007).

Cytomixis

The chromatin/chromosome migration occurred in different directions from early prophase to telophase in the Onobrychis species and populations studied (figures 3I, 3M, 3O, 5K, 6B, 7K and table 2).

B-chromosomes

B-chromosomes that occur in addition to the standard or A-chromosomes in some of the plants, are smaller than other chromosomes and do not form any association with them, although they could arrange themselves along with the A-chromosomes on the equatorial plane of the spindle and move to the poles during anaphase. In some cases they occurred as laggard chromosomes. The significance of B-chromosomes is to be found in their widespread occurrence in hundreds of flowering plants, and also in gymnosperms and in some lower forms such as ferns, bryophytes and fungi (Jones and Rees, 1982).

Acknowledgment

We received financial support from Bu-Ali Sina University. We would like to thank the Director of the Herbarium Research Institute of Forests and Rangelands (TARI), Herbarium of Ferdowsi University of Mashhad (FUMH) for making the herbarium facilities available for our study.

References

Mitotic study of some species of

48- Sirjaev G. (1925) Onobrychis generis revisio criteria. Publications of the Faculty of Science, University of Masaryk 56: 96-97.

52- Utsunomiya K. S., Bione N. C. P. and Pagliarini M. S. (2002) How many different kinds of meiotic abnormalities could be found in a unique endoamous...