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Abstract 
 

              Spinal cord injury (SCI) is a severe central nervous system trauma (CNS) that has two primary and secondary 

phases. The initial phase, which is irreversible, causes nerve tissue destruction and bleeding. Various factors in the 

second phase together aggravate the primary damage. One of the important factors of the second phase is the 

cascading of inflammatory factors, which, contribute to the further destruction of nerve tissue. In addition to surgical 

treatments, drug and cell-based or extracellular vesicles therapy, by modulating the immune system and reducing 

inflammatory factors at the lesion site, prevent further destruction of nerve tissue and help improve the patient's 

neurological and motor function. Researchers have provided many chemical and herbal medicines to reduce 

complications caused by spinal cord injury, many of which are currently being used and are also known as drugs of 

choice. However, sometimes the long-term use of these drugs causes side effects. Today, the new approach of cell 

therapy and the use of extracellular vesicles (EVs) is being investigated, which has minimized the side effects of drug 

treatments and helped to improve the function of nerve cells. Mesenchymal stem cells (MSCs), have a high ability to 

differentiate into different cells and to modulate the immune system by secreting paracrine factors. But since they 

cannot cross the blood-brain barrier (BBB), researchers solved this problem by extracting extracellular vesicles (EVs) 

derived from mesenchymal stem cells (MSCs), which also contain all paracrine factors. In this study, a brief overview 

of drug treatments, stem cells, and extracellular vesicular therapy in the treatment of spinal cord injury has been 

discussed. 
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Introduction1∗  

 

     The largest part of the nervous system is central 

nervous system (CNS). Brain and spinal cord are two 

important of CNS. This system has a limited 

capacity to repair diseases and traumatic injuries. 

One of the most important CNS injuries is spinal 

cord injury (SCI). SCI due to natural or driving 

accidents, falls from a height, and fights, annually 

lead to a wide range of relative or permanent defects 

and lack of motor, sensory, and autonomic functions 

under the damaged area in humans and animals 

(Feigin et al, 2019). Most of  SCI is related to 

contusion in the spinal cord, such as vertebral 

dislocation or fracture, can lead to seizures, 

neuropathic pain, bowel and bladder dysfunction, 

pressure sores, urinary and stool disorders, and other 

respiratory and cardiovascular complications. 

Therefore, spinal cord injury severely reduces the 

quality of life (Ma et al. 2019). Considering the 

complications that occur after spinal cord injury and 

the limited ability of the nerve tissue to repair itself, 

it is necessary to provide a solution that has the least 
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complications and helps the patient recover. In this 

study, we evaluate the pathophysiology of spinal 

cord injury and current and future therapies 

including pharmaceutical therapies, stem cell 

therapy, and extracellular vesicle therapy. 

Pathophysiology of SCI 

Traumatic spinal cord injuries cause pathological 

changes including cell death and axonal 

degeneration, ultimately leading to loss of sensory 

and motor function. (Parr et al. 2008). Following 

spinal cord injury, the primary and secondary phases 

of the disease occur. Pressure, contusion, tensile, or 

tearing of the spinal cord during the lesion leads to 

further mechanical destruction of the nervous tissue 

and also bleeding in the spinal cord, which is an 

irreversible process. Axon damage and disruption in 

the cell membrane cause the activation of a cascade 

of cellular and molecular changes and messenger 

paths that initiate the second phase of spinal injuries 

(Kang et al, 2018, Alizadeh et al, 2019). The 

formation of free radicals, the release of pro-

inflammatory cytokines (TNF-α, IL-1b, and IL-6) 
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and inflammatory cells (Monocytes, Neutrophils, 

and lymphocytes), and the oxidative stress are a 

complication of secondary injuries that causes the 

death of neurons, glial cells, and myelin 

degeneration. Following gliosis, astrocytes 

proliferate and take the place of damaged neurons, 

resulting in the appearance of a compressed glial 

scar that acts as a physical and chemical barrier and 

prevents axon regeneration. Also, following 

cavitation of the spinal cord, neurons, and glial cells 

are progressively reduced and destroyed (Tzekou 

and Fehlings, 2014; Tator and Fehlings, 1991). So, 

inhibition of inflammation and gliosis are treatment 

goals in SCI. 

Pharmacological therapies 

Corticosteroids 

     The use of methylprednisolone as the drug of 

choice in the treatment of spinal cord injury is still 

controversial because of its side effects, including 

hyperglycemia, gastrointestinal bleeding, and 

wound infection (Bracken et al, 1984; Galandiuk et 

al, 1993; Shepard and Bracken, 1994; Bracken et al, 

1997; Pointillart et al, 2000; Matsumoto et al, 2001; 

Kwon et al, 2004; Evaniew et al, 2015). However, 

administering Methylprednisolone Sodium 

Succinate (MPSS) in the first 8 hours after the injury 

prevents secondary damage by reducing free radicals 

and oxidative stress, improving blood flow and 

modulating the immune response, improving motor 

function and preserving the structure of the spinal 

cord (Hall and Braughler, 1982; Bracken et al, 1990; 

Hurlbert et al, 2013). 

Cyclooxygenase inhibitors 

     Non-steroidal anti-inflammatory drugs 

(NSAIDs) such as ibuprofen and meclofenamate 

reduces edema and inflammation of the spinal cord 

and cause axon sprouting and improvement of motor 

function with minimal side effects (Domon et al, 

2018; Chaves et al, 2018; Lambrechts and Cook, 

2021). But the comparison that was made in our 

previous study between methylprednisolone sodium 

succinate (MPSS) and meloxicam (COX-2 

inhibitor), meloxicam had less motor function 

improvement compared to MPSS (Khodabakhshi 

Rad et al, 2022). 

Minocycline 

     This drug crosses the blood-brain barrier and has 

neuroprotective, anti-inflammatory, antioxidant, and 

anti-apoptotic properties (Casha et al, 2012; Shultz 

and Zhong, 2017; Donovan and Kirshblum, 2018; 

Zhang et al, 2021). 

Chondroitinase ABC enzyme 

     Chondroitinase ABC (ChABC) with inhibition of 

Chondroitin sulfate proteoglycans (CSPG) as a 

regeneration failure agent (Fry et al, 2010; Kim et al, 

2013; Anjum et al, 2020; Zhang et al, 2021), 

increases the expression of anti-inflammatory 

cytokines and decreases pro-inflammatory cytokines 

and regulates immunity, increases synaptic 

communication and improves motor performance 

(Bradbury et al, 2002; Didangelos et al, 2014).  

Neuroimmunophilin ligands 

     Neuroimmunophilin ligands (Cyclosporin A and 

FK-506) increase neuron regeneration in the central 

and peripheral nervous system, and also have 

neuroprotective properties in ischemia, 

neurodegenerative disorders, and trauma (Liu et al, 

1991; Kang et al, 2008; Kawakami, 2013; Zhang et 

al, 2021). 

Anti-CD11d Antibodies 

     Anti-CD11d Antibodies reduce the infiltration of 

neutrophils and macrophages at the site of spinal 

cord injury (Mabon et al, 2000; Saville et al, 2004), 

improve motor function, and reduce pain and 

histopathological damage (Gris et al, 2004; Hurtado 

et al, 2012). 

T cell targeting therapies (CXCL10 antagonisms and 

Fingolimod) 

    CXCL10 antagonisms, by reducing the infiltration 

of T cells in the lesion site, reduce neuronal death 

and increase axon regeneration (Ghirnikaret al, 

2001; Glaser et al, 2006; Gonzalez et al, 2007). 

Fingolimod reduces the number of circulating 

lymphocytes and its local and systemic 

administration reduces reactive gliosis, cell death, 

and neuronal inflammation, and ultimately improves 

motor and bladder function (Chiba, 2005; Lee et al, 

2009; Norimatsu et al, 2012; Wang et al, 2015; 

Healy et al, 2016; Putatunda et al, 2018). 

Autologous macrophage therapy 

     It cleans tissue debris in the injured area, 

modulates the immune system, and affects neurons, 

glial cells, and immune cells. Although they may 

affect healthy tissue and cause cell death and 

increase the size of the lesion and functional 

disorders, they are vital for the healing and 

regenerating of axons (Bomstein et al, 2003; Knoller 

et al, 2005). 
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Hepatocyte growth factor (HGF) 

    HGF has neuroprotective effects, increases the 

regeneration of axons, oligodendrocytes, and the 

survival of neurons (Kitamura et al, 2007; Kitamura 

et al, 2011; Zhang et al, 2021), and helps to improve 

motor function by reducing the activity of astrocytes, 

glial scar, infiltration of leukocytes, and 

inflammation (Kitamura et al, 2011). 

Fibroblast growth factors (FGF) 

     The application of FGF in the form of fibrin glue 

with acidic FGF has been shown in studies to have 

neuroprotective and immunomodulatory effects and 

to increase the level of interleukins 4, 10 and 13 

(Kuo et al, 2011; Garcia et al, 2016). It reduces the 

production of free radicals and increases the survival 

and growth of different types of neurons (Koshinaga 

et al, 1993; Teng et al, 1999; Clarke et al, 2001; 

Rabchevsky et al, 2011; Zhou et al, 2018). 

Among other drug treatments that are effective in 

healing spinal cord injury and have been presented 

in various studies are 

Monosialotetrahexosylganglioside (GM-1), Anti-

Nogo-A antibodies (ATI-355), VX-210 (Cethrin), 

B-Cell depletion therapies, Neurotrophic factors, 

Granulocyte colony-stimulating factor, Vitamin E, 

Selenium, Dimethyl sulfoxide, Naloxone antagonist 

drug, Thyrotropin releasing hormone and etc 

(Anderson et al, 1985; Sterner and Sterner, 2022). 

Today, old drug treatments have given way to 

emerging therapeutic approaches (stem cell and 

extracellular vesicles therapy) in neuron protection 

in spinal cord injury of animal modeling, which has 

the least possible side effects and can be supplied 

systemically or locally. 

 

Stem cell therapy for SCI 

    Different types of stem cells have been 

investigated in the healing of spinal cord injury. 

Some of these cells include Schwann cells, olfactory 

sheath cells, mesenchymal stem cells, neural 

progenitor cells, oligodendrocyte progenitor cells, 

and various induced pluripotent stem cells (Badner 

et al, 2017; Srivastava et al, 2021). MSCs are 

pluripotent stem cells that reside in mature tissues 

such as adipose tissue, bone marrow, dental pulp, 

Wharton's jelly, and endometrium. MSCs can 

differentiate into a variety of cells, including 

adipocytes, osteoblasts, and cartilage tissue cells 

(Viswanathan and Read, 2013). Because of their 

high biological safety, immunomodulatory 

properties, and their ability to synthesize angiogenic 

and neurotrophic factors, MSCs have been proposed 

as a promising method to stimulate the regeneration 

of neurons in spinal cord injury (Mukhamedshina et 

al, 2019). MSCs exert a strong regulatory effect on 

the immune system by stimulating the secretion and 

production of a variety of inflammatory and non-

inflammatory cytokines. Therefore, in reducing 

immune rejection, the treatment of inflammatory 

conditions and autoimmune diseases has been 

considered. Studies have shown that the 

immunomodulatory effect of MSCs is exerted 

through cell-cell contact and secretion of soluble 

factors. IDO1, TGF-ꞵ, PGE-2, and HGF are among 

the important mediators in the process of immune 

modulation by MSCs (Zhou et al, 2020). In addition, 

their multiple potentials and unique ability for self-

renewal make them a suitable option for cell-based 

therapies. MSCs have a high ability in proliferation, 

differentiation, and regeneration of damaged tissue, 

remyelination, axon regeneration, inhibition of 

apoptosis, inhibition of inflammation, and change of 

macrophage phenotype (M1 to M2). Due to the 

immune-modulating feature, these cells can be 

transferred to damaged tissues after transplantation 

and at the same time guarantee cellular immunity 

and phenotypic stability (Hematti, 2008; Bagher et 

al, 2015; Bagher et al, 2016; Giacoppo et al, 2017; 

Ezquer et al, 2017; Berebichez-Fridman and 

Montero-Olvera, 2018; Fu et al, 2019; Pool et al, 

2019). 

     Although MSCs have valuable effects in 

improving the condition of various diseases, their 

clinical use is limited by the possibility of 

malignancy, potential risk of tumor formation, 

profibrogenic ability, heterogeneity of MSC 

populations, entrapment in the lungs after infusion, 

poor grafting efficiency, low immunogenicity, short 

half-life and low production of antibodies after 

repeated administration is encountered. Also, the 

clinical use and creation of MSCs bank, like other 

types of cells, require strict conditions for storage 

and maintenance (Lee, 2018; Musiał-Wysocka et al, 

2019; Navajas et al, 2019). Considering the 

limitations of MSCs, a new solution has been 

presented that does not have the mentioned 

limitations for clinical applications, and that is the 

use of extracellular vesicles. 

 

Extracellular vesicle therapy 

     Extracellular vesicles, which are secreted by 
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almost all types of cells, have a double-layer 

membrane, and for this reason, they have good 

stability and permeability. After stimulating 

receptors on the surface of target cells or entering 

target cells, EVs can regulate cell function and 

messaging (Villarroya-Beltri et al, 2014). EVs are 

rich in lipids, proteins, and nucleic acids such as 

lncRNAs and miRNAs. They are between 30-50000 

nm in diameter (Chiang and Chen, 2019; O’Brien et 

al, 2020) and are divided into three categories: 

exosomes (30-150 nm), microvesicles (100-1000 

nm) and apoptotic bodies (1000-5000 nm) 

(Chukhchin et al, 2020). 

    Extracellular vesicles derived from MSCs have 

mediators of the paracrine effects of MSCs, for 

which tumorigenic properties have not been reported 

so far (Lai et al, 2018; Nooshabadi et al, 2020). In 

addition, many of the concerns that have been raised 

about the viability and maintenance of cell function 

do not exist in EVs (Colao et al, 2018; Wu et al, 

2019). Due to their very small size, EVs are not a 

threat to pulmonary embolism and can easily cross 

physiological barriers such as the blood-brain barrier 

and show strong neuroprotective effects following 

central nervous system injuries (Yin et al, 2019; 

Mendt et al, 2019). Various studies have shown that 

systemic or local administration (in a hydrogel bed) 

of EVs with their immunomodulatory and 

immunoregulatory properties, reduces 

inflammation, edema, neuronal degeneration, glial 

scar, oxidative stress, and pro-inflammatory 

cytokines and increases angiogenesis, axonal 

regeneration, anti-inflammation cytokines and 

ultimately improves motor function (Guo et al, 2019; 

Li et al, 2020; Jia et al, 2021). Considering the 

valuable features of exosomes, it may be as a cell-

free therapeutic approach in the treatment of spinal 

cord injury. EVs can be extracted from all MSCs of 

different origins, and they play a significant role in 

the treatment of spinal cord injuries. Zhou et al, 2022 

showed that bone MSC-Exos improves pericyte 

coverage, and promotes axonal regeneration, and 

motor function by reducing leakage of BBB and 

edema (Zhou et al, 2022). Kang and Guo, 2022 

reported that human umbilical cord MSCs derived 

from Wharton’s jelly, with reducing apoptosis and 

inflammatory agents, and promoting angiogenesis 

and axonal growth, inhibit glial scar, and promote 

neuronal recovery (Kang and Guo, 2022). Moreover, 

human epidural adipose tissue mesenchymal stem 

cell-derived exosomes (ADSC-Exos) and human 

menstrual blood-derived mesenchymal stem cells 

(MenSCs) can modulate the inflammatory response 

and promote polarization macrophage and microglia 

(Sung et al, 2022; He et al, 2022). Also, dental pulp 

stem cells- EVs showed a potential motor 

performance improvement through 

immunomodulatory effects (Liu et al, 2022). The 

widespread use of EVs in the treatment of spinal 

cord injury has been investigated in many 

experimental studies and is ongoing (Zhung et al, 

2023). 

Discussion 

     Spinal cord injury has a complex 

pathophysiology. The secondary phase that occurs 

after the primary phase of damage causes neuronal 

apoptosis, inflammatory response, vascular changes, 

accumulation of free radicals, and activation of 

astrocytes and glial scar formation. Among these 

events, inflammation is one of the main factors. To 

prevent these consequences, a chain of harmful 

reactions developing around the lesion must be 

blocked. Therefore, early timing for neuron 

protection by drugs should be a basic strategy. SCI 

management is mainly to prevent progressive 

degeneration and neutralize secondary damage at the 

site of the injury to reduce pain and symptoms and 

restore motor function. So far, various drugs and 

compounds have been prescribed at different times 

after the injury in acute SCI. The basis of these 

treatments should be to reduce the penetration of 

inflammatory cells, the release of pro-inflammatory 

cytokines, and free radicals, and by modulating the 

immune system, increase the occurrence of the anti-

inflammatory phenotype of macrophages and the 

release of anti-inflammatory cytokines, so as to 

ultimately reduce the neuronal damage.  

     In recent decades, many immunomodulatory 

pharmaceuticals have been offered to improve motor 

function after SCI. Some of these drugs, such as 

NSAID/cyclooxygenase inhibitor, ChABC, and 

GCSF therapy after SCI, do not have harmful 

effects, but some drugs, such as methylprednisolone 

and GM-1, have minimal effects or have 

controversial side effects. However, drug treatments 

may not be able to cover all the inflammatory factors 

in the lesion site, and the combined and simultaneous 

use of stem cell therapies/extracellular vesicle 

therapies (systemic or local injection) can provide 

effective recovery for patients with spinal cord 

injury (Sterner and Sterner 2022; Zhang et al, 2023). 

Conclusion 

     In this study, a number of medicinal treatments 

were presented and their number will be increased in 
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the future. Today, various studies have shown that 

the use of different mesenchymal stem cells that 

have the ability to differentiate into nerve cells and 

due to important paracrine features they have can 

help to treat spinal cord injury faster. Due to the fact 

that these cells do not have the ability to cross the 

blood and brain barrier, the extraction of 

extracellular vesicles from mesenchymal stem cells 

along with having paracrine characteristics can solve 

this problem. Many studies in the field of spinal cord 

injury treatment with extracellular vesicles have 

been reported in laboratory models with satisfactory 

results. It is hoped that one day we will see the 

application of these nanovesicles in the treatment of 

spinal cord injuries in humans. 
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