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Abstract 

Despite the prominent therapeutic potentials of stem cells, their use in cell therapy has been challenged with 

some unreproducible and inconsistent outcomes in addition to the risk of rejection and tumorigenesis. Gaining novel 

insights to the importance of the conditioned medium, secretory factors and extracellular vesicles as the functional 

components of the cultured stem cells, suggested the idea of substituting the cells with their cell-free counterparts. 

Biological properties of these products are influenced by the cues received from their microenvironment. Hence, 

providing optimal and fully defined culture conditions is essential for their preparation. Fetal bovine serum (FBS), 

one of the most routine supplements of cell culture, is enriched by endogenous extracellular vesicles (EVs). These 

EVs will affect the yield, purity and functional features of the cell-free products. Here, we endeavored to examine 

and compare three different methods including ultrasonication, ultrafiltration and polymer-based precipitation, to 

deplete EVs from FBS. We chose easy to perform and fast methods with the capacity for high-throughput 

applications. Based on our observations, although all examined methods were able to deplete EVs from FBS to some 

extent, polymer-based precipitation could be considered as the method of choice with minimal consequences on the 

biological requirements of FBS to support cell growth and characteristics. Due to similarities between FBS and some 

other biological solutions, this strategy would be suitable for EV-depletion from other liquids with high 

concentrations of proteins and nutrients. Moreover, it could be applied for preparation of optimal culture conditions 

for nanoparticle applications. 

Keywords: Extracellular vesicle-depletion, Exosome, Polyethylene glycol, Ultrafiltration, Ultrasonication, Fetal 

bovine serum 

Introduction1∗

Although, in recent decades stem cell 

therapy as an advanced scientific research topic has 

been declared to hold a great promise for untreatable 

diseases, the fluctuations in the outcome of cell 

therapy procedures, put some struggle in their 

application (Choi et al., 2019; Lukomska et al., 

2019; Zakrzewski et al., 2019). In recent years, there 

has been a trend to take advantage of stem cells’ 

benefits by substituting them with their secretome or 

active components of their conditioned media such 

as extracellular vesicles (EVs) (Gurunathan et al., 

2019; Weiss and Dahlke, 2019; Zhang et al., 2019). 

These vesicles transfer a wide range of bioactive 

components such as RNAs, DNAs and proteins 

while protecting them from environmental insults 
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due to presence of a bilayer membrane (Colombo et 

al., 2014).  

There are a wide range of techniques for isolation of 

extracellular vesicles from various bioliquids or 

conditioned media (see Gurunathan et al., 2019; Li 

et al., 2019). The method of choice affects the purity 

of the final preparations which should be carefully 

examined according to the guidelines of the 

International Society of Extracellular Vesicles 

(ISEV) (Théry et al., 2018).  

     It is known that application of FBS, as an 

essential supplement in cell culture, bears a risk of 

transferring bovine EVs to the culture (Czapla et al., 

2019; Eitan et al., 2015; Mannerström et al., 2019; 

Shelke et al., 2014). A brief literature review 

indicates the significance of this problem as most 

studies investigating the functional roles of EVs 



Journal of Cell and Molecular Research (2020) 11 (2), 42-54 
  

 

http://jcmr.um.ac.ir                                               43 

 
 

have been performed under serum-free 

circumstances, which are not optimal (Lehrich et al., 

2019; Théry et al., 2006). In some other studies, 

exosome-depleted serum prepared by more than 18 

h ultracentrifugation at 100000 to 120000 g has been 

applied. Despite the large number of experiments 

performed based on this method, particle removal 

was reported to be inefficient (Lehrich et al., 2018). 

Moreover, long-term ultracentrifugation, by itself, 

will also remove most of the active components of 

the serum. It is labor intensive, time consuming and 

needs expensive infrastructures. Commercial 

exosome depleted serum batches are also available. 

However, their application is extremely limited due 

to the high cost.  

     Hence, in this study, we investigated the 

possibility of removing the nano-sized extracellular 

vesicles from FBS based on the application of cost-

effective methods including ultrasonication, 

ultrafiltration and polymer precipitation to decrease 

the expenditures of research in the field of EVs, 

while maintaining its quality. Unlike 

ultracentrifugation, these methods have the proper 

capacity for large-scale applications.  

 

Materials and Methods 

 
EV depletion strategies 

 

Probe Sonication (Ultrasonication)  

     Commercial fetal bovine serum samples (Gibco, 

Germany), thawed to room temperature, were probe 

sonicated on ice for 120 sec (10 sec on, 10 sec off) 

with 20 kHz and 50 W (Ultrasonic probe, Topsonics; 

Iran). Samples were not heat-inactivated or diluted 

before sonication. Serum samples were then 

centrifuged at 600 g for 4 min at 4°C, to remove 

components created during sonication. 

Ultrafiltration procedure 

     Briefly, FBS samples without any modifications 

or dilutions were centrifuged (400 g, 6 min) to 

remove large suspended particles. Then, they were 

concentrated from 35 ml to 5 ml using pressure-

driven concentrating protocols via Stirred Cell 

Model 8050 with the application of 100 kDa 

disposable membranes (PLHK04310, Millipore, 

USA) using nitrogen gas (<10 psi) at room 

temperature. The concentrates were applied for 

downstream applications. EV-depleted serum 

samples were syringe-filtrated and collected in clean 

vessels as the final products. 

Polymer-based precipitation  

     In order to deplete EVs from FBS samples, based 

on the polymer precipitation method, (polyethylene 

glycol) PEG 4000 (Merck, Germany) sterile 

solutions were applied. 16% PEG solutions were 

prepared in sterile deionized water and homogenized 

via ultrasonic-bath (35 Hz, 4 min, RT; BANDELIN 

SONOREX, Germany). Fetal bovine sera were 

thawed and homogenized by mechanical mixing, 

before the addition of NaCl (0.9%) at a ratio of 1:30 

V/V. Then, PEG solutions were added to fetal 

bovine samples (final ratio of 1 to 4 V/V) and shaken 

to obtain homogenous solutions. Following 90 min 

incubation at 4°C, samples were cold-centrifuged 

(5000 g) for 50 min (Sigma, 3-16pk, Germany). The 

supernatants were collected in new tubes under 

sterile conditions as the exosome-depleted serum, 

while white pellets were discarded.  

 

Nanoparticle characterization strategies 

 

Dynamic Light Scattering 

      EV-depleted serum samples, prepared using 

different methods, were loaded on Particle Size 

Analyzer (0.5 nm-10 µm; Vasco3, Cordouan, 

France) to investigate the distribution pattern of the 

remaining particles (0-1000 nm) in comparison to 

the control samples. Measurements were performed 

based on Cumulants and Pade Laplace modes 

(wavelength 657 nm) and 3 to 5 repeats were 

considered for each sample. Measurements were 

carried out at time intervals of 10.000 µs and number 

of channels of 400, as device settings. Refractive 

index of 1.33 and viscosity of 0.891 were considered 

as dispersant properties during all studies. All 

particle size analytical experiments were performed 

at 25°C and data were analyzed using NanoQ Report 

software. 

 

Zeta potential analysis 

     Zeta potential was measured to investigate the 

physical properties of different FBS samples 

following EV depletion procedures (Zeta Compact, 

CAD, France). At least three independent 

measurements were carried out for each sample and 

reported as mean of zeta potential+/-SEM in each 

case. 

 

Atomic Force Microscopy 

     Atomic force microscopy (AFM) was performed 

to demonstrate the presence of EVs in EV-enriched 

fraction following the application of polymer-based 

precipitation procedure. Briefly, diluted EV-
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containing solutions in each case were loaded on 

freshly cleaved mica and air-dried. They were 

investigated in non-contact mode at different scan 

size ranges including 3, 5 and 10 µm based on the 

protocols provided previously (Parisse et al., 2017; 

Ridolfi et al., 2019; Skliar and Chernyshev, 2019) 

via Ara Research atomic force microscope (model: 

Full). 

 

Bicinchoninic Acid Assay 

     Bicinchoninic Acid (BCA) assay was performed 

using the BCA protein quantification kit 

(DNAbioTech life Sciences) to investigate the total 

protein content of different samples according to 

manufacturer protocol. Optical densities were 

recorded at 545 nm by an ELISA reader (Awareness, 

USA) following 1 h incubation at 60°C. Same 

procedures were performed for unknown samples in 

addition to the serial dilutions of albumin as the 

standard protein. 

FBS biosufficiency evaluation Strategies 

Mesenchymal stem cells derivation and 

characterization 

     Human adipose tissue aspirates, provided by 

surgeons from healthy volunteers with informed 

consents, were transferred to the lab and applied for 

derivation of primary cultures of human MSCs, 

based on our previously described protocol 

(Ahmadian Kia et al., 2011). Briefly, after removing 

the extra blood, adipose tissues were gently washed 

with phosphate-buffered saline (PBS 1X) and 

digested with collagenase type I in the absence of 

bovine serum albumin (BSA) and CaCl2 for 45 min 

at 37°C. Digestion was stopped by the addition of 

heat-inactivated-serum-containing medium, and 

mononuclear cells were separated after 

centrifugation and washing steps. Cell suspensions 

were cultured for 48 h at 37°C in low glucose 

Dulbecco's Modified Eagle’s Medium (DMEM) 

containing 10% FBS in the presence of 

penicillin/streptomycin. Upon reaching 90 to 100% 

confluency, cells were sub-cultured. MSCs were 

applied for downstream applications from passage 

numbers 3 to 5.  

Primary adipose tissue derived mesenchymal stem 

cells (Ad-MSCs) were also applied for 

immunophenotyping experiments following 5 days 

of culture in the presence of medium supplemented 

with 10% of PEG 4000-mediated EV-depleted FBS. 

Briefly, for flow cytometric analysis, Ad-MSCs 

were trypsinized following two rounds of washing 

with PBS 1X, and after centrifugation steps they 

were applied for staining procedures with single 

color antibodies (Supplementary Table 1). 

 

MTT assay 

     Human mesenchymal stem cells were seeded in 

96-well plates (8000 cells per well) and 24 h later, 

upon reaching proper confluency, their media were 

exchanged with the complete media prepared by 

application of ultrafiltration- or PEG 4000-mediated 

EV-depleted serum. In control wells the media were 

exchanged with the normal FBS-containing media. 

24, 48 and 72 h following the treatments, 25 µl of the 

MTT solution (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide; Sigma-Aldrich, 

Germany), was added per well (final concentration 

of 5 mg/ml). After 3.5 h incubation, the media were 

discarded from each well and formazan crystals were 

solved in 200 µl dimethyl sulfoxide (DMSO). Cell 

viabilities were calculated by dividing the mean of 

optical densities in the treated-cell groups to the 

mean of ODs for the cells cultured in the presence of 

10% unmodified FBS and reported as the percentage 

of cell viabilities.  

 

Examination of sample contamination 

      PEG 4000-mediated exosome-depleted serum 

was applied to investigate the presence of any 

contamination using the BHI (Brain Heart Infusion) 

broth medium (HiMedia, Germany). Serum samples 

were inoculated in BHI media and incubated for 48 

h at 35°C incubator. This medium with high 

concentrations of nutrients supports the proliferation 

of a variety of pathogens including aerobic bacteria, 

anaerobic bacteria, yeast and molds (Atlas, 1993; 

MacFaddin, 1985; Roseno, 1919; Salfinger and 

Tortorello, 2015). 

 

Methods presented in this article for removal of EVs 

from fetal bovine serum samples were registered in 

the Intellectual Property Center of Iran under 

Declaration No. 13985014000300973 on 13 

December 2019. 
 

Results 
 

Removal of EVs from FBS by probe sonication  

     Particle size analysis was performed for FBS 

samples, following the probe sonication method. 

The efficient removal of endogenous particles in the 

range of 50-1000 nm was confirmed and compared 

with commercial FBS (Figure 1A,B). It was inferred 

from results that sonication decreases the amount of 
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poly dispersity index as an indicator of homogeneity 

from 0.4+/-0.04 to 0.2+/-0.01. Furthermore, a 

considerable decrease in the count of particles (kcps) 

was observed following the sonication experiments, 

based on particle size analysis (laser power 50%; 

Ctrl: 4735.708+/-962; Sonicates: 1354.931+/-93; 

70% depletion; data reported as mean of three 

independent experiments+/-SEM). Zeta potential 

means, measured at 23-24°C were equal to -19.83+/- 

0.596 and -23.27+/-0.384 for control and sonicated 

serum samples, respectively. This is an indication of 

homogenously dispersed solutions (Table 1, data are 

Figure 1. Particle size analysis experiments indicated the removal of desired particles from fetal bovine samples 
(A) and following the probe sonication (B). Furthermore, consequences of ultrafiltration on the distribution of 
particles from different size range (0 to 1000 nm) were demonstrated by particle size analysis via dynamic light 
scattering device: (C) commercial FBS ultrafiltrates, (D) commercial FBS ultrafiltrates followed by one round of 
syringe filtration (0.22 µm), and (E) supernatant of ultrafiltration. EV depletion was also evident in FBS samples 
following one round of polymer-based precipitation: (F) commercial FBS following EV depletion steps via PEG 
4000 solution. Enrichment of larger particles including extracellular vesicles can be observed in the pellet of the 
polymer-precipitation procedure (G). As demonstrated 3 to 5 replicates were considered for each experiment.
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reported as mean of three independent 

experiments+/-SEM). No changes were observed in 

the pH which remained 7.6 for both samples.  

Table 1. Comparative biophysical analysis for FBS 

samples following EV depletion via ultrasonication in 

comparison to commercial control FBS.  

Mean of +/-SEM FBS Ctrl EV-depleted FBS 

Temperature (°C) 24.42+/-0.02 23.54+/-0.00

Electric Field (V/cm) 8.49+/-0.003 8.57+/-0.003

Conductivity (mS/cm) 0.764+/-0.001 0.335+/-0.00

Dielectric Constant 78.62+/-0.00 78.94+/-0.00

Viscosity (mPas) 0.90+/-0.00 0.92+/-0.00

pH 7.6 7.6

Mobility (µm/s/V/cm) -1.53+/-0.04 -1.77+/-0.02

Zeta Mean (mV) -19.83+/-0.59 -23.27+/-0.34

Coefficient 12.96+/-0.00 13.17+/-0.00

Depletion of EVs from FBS by ultrafiltration 

     Based on particle size analysis, pressure-

mediated ultrafiltration accompanied by a round of 

syringe filtration resulted in efficient depletion of 

nano-sized particles (50-1000 nm size range; Figure 

1C-E). Ultrafiltrated serum samples indicated 

significantly lower kcps (17.77+/-0.40) in 

comparison to control samples (1541.011+/-21.574), 

which indicates more than 85% particle depletion 

following ultrafiltration. This method led to some 

changes in the physical appearance of the samples, 

i.e. increased light transparency and decreased

density of the serum. Furthermore, polydispersity

index was increased from 0.28+/-0.016 to 0.63+/-

0.037 following the procedure. Mean of zeta

potential, measured at 21-22°C, was equal to -

19.29+/-0.497 and -14.22+/-3.894 for FBS samples

before and after the ultrafiltration, respectively

(Table 2). During the Zeta potential analysis, similar

noise level of 1-1.05 was considered for all samples.

In accordance with probe-sonication, adjacent pH

values were measured for ultrafiltrates (7.40) in

comparison to the intact FBS samples (7.35).

Remarkable depletion of nano-sized particles was

observable in the videos recorded by zeta size

analyzer (Supplementary Videos, V1).

Table 2. Comparative biophysical analysis for FBS 

samples following EV depletion via ultrafiltration in 

comparison to commercial control FBS.  

FBS Ctrl EV-depleted FBS 

Temperature (°C) 21.96+/-0.031 22.48+/-0.059

Electric Field (V/cm) 8.54+/-0.013 8.57+/-3.834

Conductivity (mS/cm) 0.255+/-0.002 0.268+/-0.000

Dielectric Constant 79.51+/-0.01 79.32+/-0.02

Viscosity (mPas) 0.95+/-0.00 0.94+/-0.00

pH 7.35 7.40

Mobility (µm/s/V/cm) -1.42+/-0.35 -1.05+/-0.28

Zeta Mean (mV) -19.29+/-0.49 -14.22+/-3.89

No. of Tracking 62+/-14.53 12+/-2.21

Coefficient 13.57+/- 0.00 13.44+/-0.01

PEG 4000 solution as the method of choice for 

EV-depletion 

     Comparative particle size analysis performed 

based on the dynamic light scattering detection of 

particles demonstrated the efficient and reproducible 

depletion of EVs from FBS samples by PEG 4000 

(Figure 1F-G). Based on the DLS results, more than 

91% depletion was observed in kcps for serum 

samples following the PEG-precipitation 

(380.958+/-60.456) in comparison to naïve FBS 

samples (4563.949+/-1187.615). As demonstrated in 

Figure 1F, FBS samples were completely cleared 

from extracellular vesicles following a short-time 

(90 min) incubation with PEG 4000 solution and 

low-speed centrifugation (50 min, 5000 g). The 

reproducible depletion of EVs was accompanied by 

no obvious modification in the physical appearance 

of FBS samples. In addition, as confirmed by zeta 

potential analysis, the stability of the samples and 

their physical properties were not decreased or 

deteriorated, however, as we expected, number of 

tracking was decreased in EV-depleted serum 

samples due to removal of particles from 50 to 1000 

nm size range (Table 3). Mean of polydispersity 

index (PDI) which was variable between 0.234 and 

0.920 for unmodified serum samples, was equal to 

0.253+/-0.038 for PEG 4000-mediated EV-depleted 

FBS. This is an indication of a proper level of 

stability. pH value, recorded at 23°C for control 

FBS, PEG 4000-mediated EV-depleted FBS and 
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collected EVs, were equal to 7.75, 7.61 and 6.70, 

respectively. 10-second videos recorded for EV-

depleted FBS samples indicated EV removal as 

compared to the samples prepared from the pellets 

(Supplementary Videos, V2). Extracellular vesicles 

enriched from fetal bovine samples were detected 

via atomic force microscopy as demonstrated in 

Figure 2. 

     BCA assay, to investigate the total protein 

content of FBS samples following the probe 

sonication, ultrafiltration or PEG-precipitation, 

demonstrated that while the protein content of FBS 

remained constant in comparison to control FBS 

(5163.294+/-0.011) following ultrasonication 

(5142.223+/-0.004), it was considerably decreased 

following one round of ultrafiltration accompanied 

by syringe filtration (1459.223+/-0.018).  

     EV-depleted FBS samples prepared by polymer 

precipitating method were negative for bacterial, 

fungal or mold contaminations at the end of the 

process, as confirmed by inoculation of the samples 

in BHI broth medium. Moreover, culturing the cells 

in the presence of the EV-depleted FBS for 5 days 

had no considerable effect on cell viability and 

immune phenotype as demonstrated by 

morphological observations (Figure 3A), MTT assay 

(Figure 3B) and flow cytometric analysis of the cells.   

 
Table 3. Comparative biophysical analysis for FBS 

samples following EV depletion via PEG 4000 in 

comparison to commercial control FBS.  

Mean of +/-SEM FBS Ctrl 
EV-depleted 

FBS  

Temperature (°C) 24.45+/-0.023 23.54+/-0.00 

Electric Field (V/cm) 8.48+/-0.003 8.57+/-0.003 

Conductivity (mS/cm) 0.763+/-0.001 0.335+/-0.000 

Dielectric Constant 78.60+/-0.00 78.94+/-0.00 

Viscosity (mPas) 0.90+/-0.00 0.92+/-0.00 

pH 7.75 7.61 

Mobility (µm/s/V/cm) -1.52+/-0.04 -1.71+/-0.02 

Zeta potential (mV) -19.74+/-0.59 -22.60+/-0.34 

No. of Tracking 105+/-7.05 30+/-4.09 

Coefficient 12.95+/-0.00 13.17+/-0.00 

 

 

Cell viabilities of mesenchymal stem cells, treated 

with EV-depleted serum prepared by PEG method or 

ultrafiltration were assessed in comparison to 

reference controls. 91 percent of the primary cells 

remained viable after 24 h of both treatments. Cell 

viabilities were equal to 80.85+/-0.60 and 86.72+/-

2.16 for PEG group and 86.95+/-3.74 and 93.17+/-

0.98 for ultrafiltration method, after 48 and 72 h, 

respectively. Furthermore, Ad-MSCs showed the 

common spindle-like morphology of mesenchymal 

stem cells, when they were exposed to the PEG 

4000-mediated EV-depleted FBS. During our 

experiments cells exposed to these media were 

frequently sub-cultured and propagated without any 

technical problem, similar to cells grown in control 

medium. 
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    As demonstrated in Figure 4, primary adipose 

tissue derived cells indicated high expression levels 

for CD44 (99.7%), CD105 (99.8%) and CD29 

(97.2%), while they were negative for the expression 

of CD45 (0.93%) and CD11b (0.60%), as markers 

for hematopoietic and endothelial cells. They were 

also positive for expression of CD34 (Colter et al., 

2000; Harvanová et al., 2011; Pittenger et al., 1999; 

Riekstina et al., 2008; Tran et al., 2012; Vaculik et 

al., 2012).  
 

Discussion 

 
Although first cell-based products have been 

approved by the European Medicines Agency 

(EMA) in 2018 and despite emerging very recent 

approvals for therapeutic applications of MSCs, still 

there are major concerns regarding their short- and 

long-term consequences. Among which risk of pro-

tumorigenic events, stimulation of immune response 

and reduced differentiation capacity have been 

highlighted (Chu et al., 2019; Hoogduijn and 

Lombardo, 2019). Such unique and undeniable 

superiority of cell-based therapies in comparison to 

classic therapeutics, led the scientists to find a way 

for bringing the benefits of the cells to off-the-shelf 

and cell-free products, by using extracellular 

vesicles. As this field is yet in its infancy, providing 

the basic requirements, in an affordable manner, is 

not easy for many researchers throughout the world.  

     The presence of endogenous EVs in fetal bovine 

serum, as well as other biological fluids, is important 

from different aspects. As previously reported, they 

 

 
Figure 2. Atomic force microscopic detection of extracellular vesicles enriched from FBS samples. Samples 

were diluted at least 50 folds before loading on freshly cleaved mica. (A, C) 2D phase and (B, D) 3D amplitude 

pictures of EV-containing fractions following the application of polymer (PEG 4000) precipitation (A, B) and 

ultrafiltration (C, D) methods for removal of EVs from FBS. 
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have significant influence on different features of the 

cells in culture (Beninson and Fleshner, 2015) and 

encounter with their normal functional properties 

(Angelini et al., 2016). In this study, we aimed to 

deplete endogenous EVs present in the FBS by 

application of widely accessible methods to be 

applied for large-scale depletion of EVs in an 

affordable manner. Ultrasonication, ultrafiltration 

and polymer-precipitation methods were 

investigated comparatively to achieve this goal.   

     Ultrasonication was used as a proper method to 

destruct the lipid bilayer membrane of the 

extracellular vesicles and was followed by one round 

of centrifugation to remove the artifacts. 

Ultrafiltration is considered as a method of choice 

for isolation of extracellular vesicles from 

conditioned media or EVs from liquid biopsies 

including urine, saliva or plasma samples (He et al., 

2019; Lobb et al., 2015; Yu et al., 2018). In a 

previous study, depletion of EVs from FBS was 

shown, based on ultrafiltration method via the 

application of ultra-15 centrifugal filters for 55 min 

at 3000 g (Kornilov et al., 2018). Although this 

method is economically preferred over the 

commercially available EV-depleted FBS, it does 

not yet meet the requirements for large-scale EV 

preparation. Ultrafiltration chambers, working under 

high pressure conditions, are proper substitutes to 

deplete the EVs under sterile conditions. In addition, 

this method is faster than common 

ultracentrifugation method, which takes more than 

18 h. However, due to agglomeration of the vesicles 

following ultrafiltration of different liquids under 

pressure, it becomes necessary to add another 

filtration step to remove larger aggregates. Ideal 

ultrafiltration membranes are the ones with strong 

mechanical properties, hydrophobicity, durability, 

chemical stability and low polymer cost (Dobosz et 

al., 2017).  

     The third method investigated here is polymer 

based precipitation of the EVs by PEG 4000. PEG as 

a water-excluding polymer, has the capacity for 

conducting less soluble extracellular vesicles out of 

the media via binding to water molecules (Li et al., 

2017; Patel et al., 2019; Ramasubramanian et al., 

2019; Willis et al., 2017; Witwer et al., 2013). 

Normally PEG 6000 is the chemical of choice for 

isolation of extracellular vesicles from different 

biological liquids and conditioned media with an 

acceptable efficiency (Ludwig et al., 2018). To avoid 

 

 
Figure 3. Spindle-like morphology of mesenchymal stem cells propagated in (A) normal medium in comparison 

to the cells which were conditioned with EV-depleted supplemented media prepared by (B) polymer precipitation 

or (C) ultrafiltration strategies, as evidenced by light microscopy. Panel (D) demonstrates cell viabilities of Ad-

MSCs grown in different media (exosome-depleted FBS prepared based on the PEG precipitation or ultrafiltration 

methods) after 24, 48 and 72 h, as obtained by MTT assay. 
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strong protein precipitation in FBS samples PEG 

6000 was substituted by PEG 4000 and the 

incubation time was decreased to 90 min. The 

efficacy of EV removal was explored based on 

particle size analysis. Zeta potential experiment was 

performed to monitor the physico-chemical 

properties and stability of the FBS samples. Results 

indicated no considerable change in the primary 

features of the samples. Solutions with higher 

magnitude of zeta potential (mV) are less competent 

for sedimentation or agglomeration during the time 

(Helwa et al., 2017; Wang et al., 2015). Based on our 

observations, FBS samples depleted from EVs by 

PEG 4000 were closely similar to normal FBS 

regarding their stability in comparison to the ones 

exposed to rounds of ultrafiltration/filtration. 

    Our morphological analysis in addition to MTT 

assay and immunophenotyping of the Ad-MSCs 

following exposure to the media supplemented with 

EV-depleted FBS, prepared based on the polymer-

precipitation method, demonstrated normal growth 

and phenotype of the cells. Furthermore, the 

presence of EVs in the precipitants was approved by 

atomic force microscopy. 

 

 

Figure 4. Flow cytometric analysis of primary adipose tissue derived mesenchymal stem cells from passage 3 

following 5 days of culture in the presence of the medium supplemented by 10% PEG 4000-mediated EV-

depleted serum. As evidenced by these experiments mesenchymal stem cells retained high expression levels 

for their typical markers including CD44, CD105 and CD29, while, they were negative for CD45 and CD11b 

as non-mesenchymal cell origin CD markers. 37% of the cells express CD34 (BD FACSCalibur, BD 

biosciences, USA). Data analysis was performed by FlowJo (version 7.6.1). 
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     In conclusion, we propose both polymer-

precipitation and ultrafiltration can be applied as 

proper and efficient methods to deplete EVs from 

FBS samples. These methods are faster and less 

labor-intensive in comparison to the 

ultracentrifugation method. Furthermore, unlike 

more complicated methods such as microfluidics or 

tangential flow filtration, there is no need for high-

tech or advanced instruments and expertise. Based 

on our experiments application of PEG 4000 for 

depletion of EVs would simplify the procedure and 

decrease the expenditures, while, would provide 

higher efficiency of EV depletion without any side 

effects on the quality of the FBS. This method would 

be of special interest for removing the EVs as it 

supports large-scale requirements and is not 

dependent on frequent rounds of filtration, 

centrifugation, preparation of serial dilutions, and 

application of disposable materials. Due to less 

overall sensitivity, this method is also proper for 

culturing a wide range of cancerous cell lines under 

exosome-depleted condition and its application 

could be attributed to other fields of nano-

therapeutics and targeted drug delivery procedures. 
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Figure S1. Size distribution of detected particles based on their frequencies (number) during particle size 

analysis, as demonstrated by DLS device. As seen a wide range of particles detected inside unmodified serum 

samples in the first row (A), were removed in the second and third rows, which represent ultrafiltration-

mediated exosome-depletion (B) and PEG-mediated-exosome-depletion (C), following three rounds of 

analysis. 

 
Table S1. Antibodies applied during flow cytometric analysis. 

 

No. Antibody Company Cat No. Isotype Clone Reactivity 

1 CD44-FITC Immunostep 114659 IgG2a HI44a Human 

2 CD105-PE Exbio 1P-298-T025 IgG2a MEM-

226 

Human 

3 CD29-PerCP Immunostep 29PB-100T IgG2b VJ1/14 Human 

4 CD34-PE Immunostep 34PE-100T IgG1 581 Human 

5 CD45-FITC BD Bioscience 560976 IgG1, κ - Human 

6 CD11b-PE Biolegend 101207 IgG2b, κ - Mouse, 

Human 
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Supplementary Videos S1. Depletion of EVs from 

FBS samples (Ctrl) following the ultrafiltration 

procedure (UF) was shown for three different 

samples, as evidenced by zeta potential analysis. 

(Videos: Ctrl 1, Ctrl 2, Ctrl 3, UF1, UF2, UF3). 

 

Supplementary Videos S2. Endogenous EVs 

isolated from FBS samples (EVs collected by PEG 

precipitation) in addition to EV-depleted serum 

samples (PEG 4000-mediated EV-depleted FBS) 

were shown for three different samples. Videos were 

recorded by Zeta Analyzer device. (Videos: 

endogenous FBS EVs-1, endogenous FBS EVs-2, 

endogenous FBS EVs-3, EV-Depleted serum-1, EV-

Depleted serum-2, EV-Depleted serum-3). 
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