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Abstract 
 

The study used various screening techniques, clustering, decision tree and generalized rule induction 
(association) (GRI) models and molecular phylogenic relationship to search for patterns of halophilicy and to 
find features contribute to halolysin salt stability. We found that Met was the sole N-terminal amino acid in 
halolysin proteins, whereas other amino acids found at that position of other proteases and termitase. Eighty-
three protein features were shown to be important in feature selection modeling, and just one peer group with 
an anomaly index of 2.42 declined to 1.87 after being run using only important selected features. The depth of 
the trees generated by various decision tree models varied from 1 to 5 branches. Compared to datasets without 
feature selection the number of peer groups in clustering models was reduced significantly (p<0.05). In most 
decision tree models, the frequency of Gly - Gly was the most important feature for decision tree rule sets and 
this feature was used in antecedent to support the rules in most GRI association rules. Significant differences  
(p < 0.001) found in charged amino acids between halolysin and other proteins with more Asp and Glu in 
halolysin proteins, while more hydrophobic residues and aliphatic amino acids were found in other proteases.  
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Introduction ∗ 

 
Halobacteria, extremely halophilic red-

pigmented bacteria, have been intensively studied 
during the past decades (Sumper, 1987; Oren, 1994; 
Kamekura, 1998; Mukohata et al., 1999; Joo and 
Kim, 2005), through which our understandings of 
various biological processes such as energy 
metabolism (Gonzalez-Hernandez and Pena, 2002), 
environmental response (Elevi Bardavid and Oren, 
2008), gene regulation (Conover and Doolittle, 
1990), and the Archaea l cell cycle (Cui et al., 
2006) have been greatly increased. Their 
extraordinary ability to grow in hypertonic solution 
(above 300 g of NaCl per liter) and their potential 
ability to hydrolyze proteins are the main reasons 
for rapid increase in research in this field 
(Kristjansson et al., 1986). A microorganism 
corresponding to the description of Halobacteria 
salinarum was isolated from salted fish more than 
80 years ago (Soppa, 2006). Since then, many 
haloArchaea l species have been isolated, which, 
after considerable renaming, are currently grouped 
into 25 genera. Several years ago, it was decided 
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that the species Halobacterium salinarum, 
Halobacterium halobium, and Halobcterium 
cutirubrum are so similar that they should be 
regarded as strains of one species named 
Halobacterium salinarum. Halobacterium 
salinarum shows very high genetic variability that 
was attributed to the large number of insertion 
sequences (Yang et al., 2006).  

A small percentage of proteins can tolerate 
salinity and dryness stress. The enzymes from 
extremely halophilic bacteria represent a 
fascinating example of adaptation. . These enzymes 
function in vivo and in vitro at ranges of  4 to 5 M 
NaCl and upon exposure to low salt densities they 
lose their activities very  rapidly (Binbuga et al., 
2007; Pesenti et al., 2008; Zhu et al., 2008). 
Recently, genes for a number of halophilic enzymes 
have been cloned, including dihydrofolate 
reductase from Haloferax volcanii (Fine et al., 
2006), glutamate dehydrogenase from 
Halobacterium salinarium (Ingoldsby et al., 2005), 
and malate dehydrogenase from Haloarcula 
marismortui (Zaccai et al., 1986). The mechanism 
of halophilicity of these enzymes, however, has not 
been fully elucidated at the molecular level. It has 
been shown Glu243Arg, a mutant protein of the 
malate dehydrogenase, was more halophilic, and 
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required significantly higher concentrations of 
NaC1 or KCI for equivalent stability (Madern et al., 
1995). Proteases are key enzymes in many 
processes important to the cell and are widely used 
in biotechnology and industry. Many 
representatives of the Archaea domain are 
extremophiles, thriving in conditions lethal to most 
cells. Thus, Archaea represent an important 
resource of enzymes, including proteases, in 
applied research as well as for basic enzymology. 
For applications requiring low water activity such 
as high salt or organic solvents, haloArchaea l and 
their enzymes have great potential to act as 
biocatalysts (Kamekura et al., 1992; De Castro et 
al., 2008). 

Halolysin, a halophylic alkaline serine protease, 
has been extracted from Archeaebacterium and 
some other bacteria such as Natrialba asiatica, 
Haloferax mediterranei, Natrialba magadii and 
Halobacterium sp. NRC-1 (Kamekura et al., 1992; 
Kamekura and Seno, 1993; Kamekura et al., 1996; 
De Castro et al., 2008). Halolysinfrom Halophilic 
archaeon is active at NaCl concentration of 4-4.5 
M, loses its activity at salt concentration lower than 
2M and is a very interesting sample of studying 
adaptation to harsh conditions (Feng and Yang, 
2008; Strahl and Greie, 2008). The purpose of this 
study was to find the most important features 
contributing to these enzymes’ ability to stand high 
concentration of salts and find other similar 
possible enzymes. Here we studied phylogenic 
relationship, feature selection, screening models, 
association models and statistical analyses among 
halolysin and other proteases extracted from few 
bacteria, fungi and plants in order to investigate 
features contributing to salt tolerance. 
 
Material and Methods 
 

Nine halolysin sequences (A42605, AAG20619, 
AAV66536, BAA01049, BAA10958, CAP14928, 
NP_281139, P29143 and YP_001690274) were 
extracted from UniProt Knowledgebase (Swiss-Prot 
and TrEMBL). To find similar proteases, 
peptidases and termitase sequences, p29143 
halolysin sequence was used to blast with available 
databases and 37 plant protease, 8 fungal proteases 
and 6 termitase were found and saved as FASTA 
format. To draw phylogenic tree, three software 
(CLCbio, MEGA4 and CLASTAL W) were used 
with similar parameters (i.e. Neighbor joining 
algorithm). Similar consensus sequences with 
100% restrictions from alignment sequence with 
lower E value were chosen. Forty hundred and 
thirty nine protein features such as length, weight, 

isoelectric point, count and frequency of each 
element (carbon, nitrogen, sulphur, oxygen and 
hydrogen), count and frequency of each amino acid, 
count and frequency of negatively charged, 
positively charged, hydrophilic and hydrophobic 
residues, count and frequency of dipeptids, number 
of α-helix and β-strand and other secondary protein 
features were extracted.  

To investigate protein features contributing to 
resistance of halolysin proteins to salty conditions 
and to compare them with other proteases and 
termitase studied in this paper, we divided dataset 
proteins into two groups: 1) T/F groups (T = 
halolysin proteins and F = other proteins; plant, 
bacterial and fungal proteases and termitase). 2) 
H/B/F/P/T groups (H = halolysin proteins, B = 
bacterial proteases, F = fungal proteases, P = plant 
proteases and T = termitase; comparing halolysin 
proteins with individual class of other proteins). 
The Protein name (either T/F or H/B/F/P/T) 
variable was set as the output variable and others as 
input variables. All features were classified as 
continuous variables, except the N-terminal amino 
acid, which was classified as categorical. A dataset 
of these protein features was imported into 
Clementine software (Clementine_NLV-11.1.0.95; 
Integral Solution, Ltd.).  

Various decision tree algorithms were applied to 
the datasets to identify the most important features 
and find possible patterns that contribute to protein 
classes. These models allowed the development of 
classification systems that automatically included in 
their rules only the attributes important in making a 
decision. Attributes that did not contribute to the 
accuracy of the tree were ignored. This process 
yielded very useful information about the data and 
could be used to reduce the data to relevant fields 
only before training another learning technique, 
such as a neural network. As various algorithms 
were available for performing classification and 
segmentation analysis, and herein we used different 
decision tree and cluster analysis models. All 
models were run both with and without feature 
selection criteria to investigate the effects of the 
feature selection algorithm on other models 
behavior. All models run as previously described 
(Ebrahimi et al., 2009; Bijanzadeh et al., 2010; 
Ebrahimi and Ebrahimie, 2010). 
 
Screening Models 
 
Anomaly detection model 

This model was used to identify outliers or 
unusual cases in the data. Unlike other modeling 
methods that store rules about unusual cases, 
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anomaly detection models store information on 
what normal behavior looks like. This makes it 
possible to identify outliers even if they do not 
conform to any known pattern. While traditional 
methods of identifying outliers generally examine 
one or two variables at a time, anomaly detection 
can examine large numbers of fields to identify 
clusters or peer groups into which similar records 
fall. Each record then can be compared to others in 
its peer group to identify possible anomalies. The 
further away a case is from the normal center, the 
more likely it is to be unusual. 
 
Feature selection algorithm 

The feature selection algorithm was applied to 
identify the attributes having a strong correlation 
with the thermostability of enzymes. The algorithm 
considers one attribute at a time to determine how 
well each predictor alone predicts the target 
variable. The important value for each variable is 
then calculated as (1–p), where p is the p value of 
the appropriate test of association between the 
candidate predictor and the target variable. The 
association test for the categorized output variables 
differs from the test for continuous variables. In our 
study, when the target value was categorical (as in 
our datasets), p values based on the F statistic were 
used. The idea was to perform a one-way ANOVA 
F test for each predictor; otherwise, the p value was 
based on the asymptotic t distribution of a 
transformation of the Pearson correlation 
coefficient. Other models, such as likelihood-ratio 
chi-square (also tests for target-predictor 
independence), Cramer's V (a measure of 
association based on Pearson's chi-square statistic), 
and Lambda (a measure of association that reflects 
the proportional reduction in error when the 
variable is used to predict the target value) were 
conducted to check the possible effects of 
calculation on feature selection criteria. The 
predictors were then labeled as important, marginal, 
and unimportant, with values > 0.95, between 0.95 
and 0.90, and < 0.90. 
 
Clustering Models 
 
K-Means 

The K-Means model can be used to cluster data 
into distinct groups when the content of the groups 
is unknown. Unlike most learning methods in 
Clementine, K-Means models do not use a target 
field. This type of learning, with no target field, is 
called unsupervised learning. Instead of trying to 
predict an outcome, K-Means tries to uncover 
patterns in the set of input fields. Records are 

grouped so that those which are within a group or a 
cluster tend to be similar to each other, whereas 
those which are in different groups are dissimilar. 
K-Means works by defining a set of starting cluster 
centers derived from the data. It then assigns each 
record to the cluster to which it is most similar 
based on the record's input field values. After all 
cases have been assigned, the cluster centers are 
updated to reflect the new set of those records 
assigned to each cluster. The records are then 
checked again to see whether they should be 
reassigned to a different cluster, and the record 
assignment/cluster iteration process continues until 
either the maximum number of iterations is reached 
or the change between one iteration and the next 
fails to exceed a specified threshold. 
 
Two-Step cluster 

The Two-Step cluster model is a two-step 
clustering method. The first step makes a single 
pass through the data, during which it compresses 
the raw input data into a manageable set of 
subclusters. The second step uses a hierarchical 
clustering method to progressively merge the 
subclusters into larger and larger clusters, without 
requiring another pass through the data. 
Hierarchical clustering has the advantage of not 
requiring the number of clusters to be selected 
ahead of time. Many hierarchical clustering 
methods start with individual records as starting 
clusters and merge them recursively to produce 
ever-larger clusters. 
 
Decision Tree Models 
 
Classification and regression tree (C & RT) 

This model uses recursive partitioning to split the 
training records into segments by minimizing the 
impurity at each step. A node is considered pure if 
100% of cases in the node fall into a specific 
category of the target field. 
 
CHAID 

This method generates decision trees using chi-
square statistics to identify optimal splits. Unlike 
the C&RT and QUEST models, CHAID can 
generate non-binary trees that means some splits 
can have more than two branches. 
 
Exhaustive CHAID 

This model is a modification of CHAID thatmore 
thoroughly examins all possible splits, but it takes 
longer to compute. 

 
QUEST 

The QUEST model provides a binary 
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classification method to builde decision trees. It is 
designed to reduce the processing time required for 
large C & RT analyses while also reducing the 
tendency are performed in classification tree 
methods to favor predictors that allow more splits. 
 
C5.0 

The C5.0 model builds either a decision tree or a 
rule set. The model works by splitting the samples 
based on the field providing the maximum 
information gained at each level. The target field 
must be categorical. Multiple splits into more than 
two subgroups are allowed. 
 
Association Model 

The generalized rule induction (GRI) model 
discovers association rules in the data. GRI extracts 
a set of rules from the existing data, pulling them 
out the rules with the highest information content. 
Information content is measured using an index that 
takes both the generality (support) and accuracy 
(confidence) of rules into account. 

Statistical analyses; general linear model 
comparisons (pairwise comparisons with Tukey test 
and confidence level of 95.0% were done by the 
SPSS software (version 13, Michigan, USA). 
 

Results  
 

More than 72% (155) of proteins studied here 
were bacterial proteases while 17.21% (37), 4.19% 
(9), 3.72% (8) and 2.79% (6) were plant proteases, 
halolysins, fungal proteases and termitase. The 
average length, weight, isoelectric point, and 
aliphatic indices of proteins studied here were 
573.27 ± 260.91, 60.95 ± 28.30, 6.68 ± 1.59, and 
81.40 ± 7.80 (mean ± SD). The average counts of 
sulphur, carbon, nitrogen, oxygen, and hydrogen 
were 12.86, 2695.85, 733.94, 852.92, and 4196.46, 
respectively, and the average counts of 
hydrophobic, hydrophilic, and other residues were 
292.84 ± 134.88, 169.84 ± 75.40, and 110.58 ± 
61.90 (mean ± SD). The frequencies of hydrogen, 
carbon, oxygen, nitrogen, and sulphur in all 
enzymes were 0.494 ± 0.005, 0.317 ± 0.003, 0.087 
± 0.003, 0.101 ± 0.005 and 0.002 ± 0.001, and the 
frequencies of hydrophobic, hydrophilic, other, 
negatively, and positively residues were 0.509 ± 
0.048, 0.303 ± 0.051, 0.188 ± 0.033, 56.55 ± 36.38, 
and 43.66 ± 25.14, respectively. The frequencies of 
amino acids ranged from a low amount of 0.0001 ± 
0.00001 for Ile, Asp and Gln to a high amount of 
0.176 ± 0.024 for Ala. 

 

 
 

Figure 1. Web graph of N-terminal amino acids in a) T (halolysin proteins) and F (bacterial, Fungi and plant proteases 
and termitase), and b) bacterial proteases (B), fungal proteases (F), halolysin proteins H), plant proteases (p) and 
termitase (T) groups, thicker lines showing higher incidences of amino acids.   
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In 97.21% of proteins, the N-terminal amino acid 
was Met and in 0.93% of proteins the same position 
was occupied by Tyr. In 0.47%, the last amino acid 
was Cys, Leu, Thr and Trp. The average non-
reduced Cys extinction coefficient at 280 nm was 
71367.07 ± 31759, non-reduced Cys absorption 
was 1.21 ± 0.28, the reduced Cys extinction 
coefficient was 71109.49 ± 31629.72, and the 
reduced Cys absorption was 1.20 ± 0.28 (mean ± 
SD). Figure 1 is a web graph that illustrates the 
strength of the relationship between N-terminal 
amino acids and halophilic properties of proteins. 
Met exhibited a strong relationship with all proteins 
(a thicker line shows a stronger relationship). Met 
was the only N-terminal amino acid found in 
halolysin proteins, whereas Cys, Leu, Tyr, Try and 
Thr were found at N-terminal position of other 
proteases and termitase proteins. When halolysin 
proteins were compared with individual classes of 
other proteases and termitase, Met exhibits a strong 
relationship with all proteins and was the only N-
terminal amino acid found in halolysin proteins, 
whereas Tyr and Thr were found at N-terminal 
position of fungal proteases and termitase proteins 

and Tyr, Try, Cys and Leu were found at the N-
terminal in bacterial proteases. 

The results showed that halolysin proteins can be 
inserted in a separate phylum between eukaryotes 
(plants and fungi) and bacteria, called Archea 
(figure 2). Some bacterial proteases such as 
thermophilic proteases [Q45670 (b118), EDL64549 
(b147), ZP-01860436 (b149), YP-002603898(b108) 
and YP-002603888] showed close relationship with 
halolysin proteins. Plant proteases from pherphion 
family with EEF49096 (Tripeptidyle peptidase II, 
putative) and some bacterial proteases are classified 
in a separate group. According to figure 2, plants 
proteins are located at the top of phylogenic tree 
while fungi proteins with other bacteria proteases 
such as CAD85094 (b129) and CAD43134 (b50) 
are put near the top of the tree, confirming their 
place as eukaryotes. The results of protein blast 
showed that some parts of the proteins are 
conserved in all proteins studied here (E value 0). 
These conserved proteins have been known as 
putative, pattern formation or hypothetical proteins 
with a common amino acid sequence of Sec 7; this 
central region serves as exchange factor. 

 

 
 
Figure 2. Phylogenic tree generated by MEGA4 software, showing halolysin proteins position regarding to other 
proteases and termitase (f: Fungi protease, T: Termitase, P: Plant protease, H: Halolysine). 

 
When feature selection model applied on dataset 

of protein features compared halolysin with other 
proteins (T/F groups), 83 of 215 features were 
ranked as important (p > 0.95) in contribution to 
halolysin ability to stand harsh conditions (table 1) 
and 15 features were found to be marginal (0.90 < p 
> 0.95). When the halolysin was compared with 

each individual protein classes (H/B/F/P/T), 176 
out of 215 features were ranked as important and 15 
features as marginal. Each time, a node was 
generated with just important features and was used 
whenever it was necessary to run all other models 
on feature selection dataset (as mentioned in 
Materials and Methods). 
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Table 1: Results of feature selection on important and marginal features contributing to the optimum temperature of 
proteins 
 

No Field Value Rank No Field Value Rank 
1 Freq. of Gly-Gly 1.0 Important 50 Freq. of Phe-Ala 0.991 Important 

2 Freq. of Ala –Asp 1.0 Important 51 Freq. of Ala - Cys  0.99 Important 

3 Freq. of Gly-Asp 1.0 Important 52 Freq. of His- Asp 0.989 Important 

4 Freq. of Asp-Pro 1.0 Important 53 Mature peptide 0.989 Important 

5 Freq. of Glu-Leu 1.0 Important 54 Freq. of Glu-Val 0.989 Important 

6 Freq. of Aspartic Acid 1.0 Important 55 Freq. of Cys-Ala 0.988 Important 

7 Freq. of Cys-Trp 1.0 Important 56 Freq. of His- Glu 0.988 Important 

8 Freq. of Gly-Arg 1.0 Important 57 Freq. of Glu-Lys 0.987 Important 

9 Freq. Negatively Charged 1.0 Important 58 Freq. of Gly-Thr 0.987 Important 

10 Freq. of Gly 1.0 Important 59 Active site 0.986 Important 

11 Freq. of Glu-Tyr 1.0 Important 60 Freq. of Glu-Ser 0.985 Important 

12 Freq. of Asp-Leu 1.0 Important 61 Freq. of Met 0.984 Important 

13 Gene 1.0 Important 62 Freq. of His- Lys 0.984 Important 

14 Freq. of Ile 1.0 Important 63 Freq. of Phe-His 0.984 Important 

15 Freq. of Asp-Asp 1.0 Important 64 Freq. of lie-Lys 0.983 Important 

16 Freq. of Asp-Gly 1.0 Important 65 Count of Phe 0.983 Important 

17 Freq. of Asp-Glu 1.0 Important 66 Freq. of Cys-Pro 0.982 Important 

18 Freq. of Ala -Lys 1.0 Important 67 Count of Ile 0.981 Important 

19 Isoelectric point 1.0 Important 68 Freq. of Phe-Trp 0.981 Important 

20 Freq. Positively Charged 1.0 Important 69 Freq. of Ala -lle 0.98 Important 

21 Freq. of Phe 1.0 Important 70 Freq. of Glu-Gly 0.977 Important 

22 Freq. of lie-Arg 1.0 Important 71 Freq. of Gly-Phe 0.977 Important 

23 Freq. of Lys 1.0 Important 72 Freq. of Ala -Pro 0.976 Important 

24 Freq. of Glu-Gln 1.0 Important 73 Positively Charged residues 0.976 Important 

25 Freq. of Glu-Pro 1.0 Important 74 Freq. of Ser 0.975 Important 

26 Freq. of Glu-lle 1.0 Important 75 Freq. of Gly-His 0.975 Important 
27 Freq. of Asp-Gln 1.0 Important 76 Freq. of Gly-Ala 0.973 Important 
28 Freq. of Ala -Thr 1.0 Important 77 Freq. of Ala -Met 0.971 Important 
29 CDS 1.0 Important 78 Freq. of His- Cys 0.965 Important 
30 Freq. of Cys-Glu 1.0 Important 79 Freq. of lie-Phe 0.963 Important 
31 Freq. of Asp-Arg 1.0 Important 80 Freq. of Asp-Ala 0.962 Important 
32 Freq. of lie-lie 1.0 Important 81 Freq. of sulphur 0.958 Important 
33 Freq. of Ala -Ser 0.999 Important 82 Freq. of Gly-Pro 0.957 Important 
34 Freq. of Asp-His 0.999 Important 83 Freq. of Gly-Lys 0.953 Important 
35 Freq. of Glu 0.999 Important 84 Count of Asp 0.944 Marginal 
36 Freq. of Asp-Lys 0.999 Important 85 Count of Met 0.943 Marginal 
37 Freq. of Asp-Phe 0.999 Important 86 Freq. of lie-Met 0.94 Marginal 
38 Freq. of Phe-Asn 0.998 Important 87 Count of His 0.933 Marginal 
39 Count of Lysine 0.998 Important 88 Freq. of Ala -Tyr 0.93 Marginal 
40 Freq. of Phe-Glu 0.997 Important 89 Freq. of His- Ser 0.927 Marginal 
41 Freq. of Glu-Glu 0.996 Important 90 Count of Beta-strand 0.926 Marginal 
42 Freq. of Glu-Thr 0.995 Important 91 Freq. of Tryp 0.924 Marginal 
43 Freq. of Phe-Phe 0.995 Important 92 Freq. of lie-Leu 0.922 Marginal 
44 Freq. of Asp-Thr 0.994 Important 93 Freq. of Cys-Ser 0.92 Marginal 
45 Freq. of His- Leu 0.993 Important 94 Freq. of Ala –Glu 0.919 Marginal 
46 Freq. of Phe-lie 0.993 Important 95 Freq. of Glu-Cys 0.918 Marginal 
47 Freq. of His 0.992 Important 96 Freq. of Phe-Lys 0.912 Marginal 
48 Freq. of Gly-Asn 0.992 Important 97 Freq. of Glu-Asp 0.908 Marginal 
49 Freq. of Gly-Ser 0.992 Important     
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When the anomaly detection model was used on 
T/F groups, the records were divided into just one 
peer groups with an anomaly index cutoff of 2.42 
and 3 records of this peer group of 215 records 
were found to be anomalies. When the models were 
applied using feature selection criteria, one peer 
groups with an anomaly index cutoff of 1.92 was 
found. When the model was used on H/B/F/P/T 
groups, one peer group with three records and 
anomaly index of 2.41 and 1.87 for dataset with or 
without feature selection filtering was found, 
respectively.  

When the K-Means model was applied on T/F 
groups, the records were put into 5 groups or 
clusters (46, 14, 90, 10 and 55). When the model 
was applied on dataset with feature selection 
filtering, again five clusters with 58, 56, 21, 26 and 
54 records were generated. When the halolysin was 
compared with each individual class of proteins, 
(H/B/F/P/T groups), 47 of the records were put into 
the first cluster and 14, 89, 10, and 55 records were 
put into the second, third, fourth, and fifth clusters, 
respectively. When the K-Means model was 
applied on the dataset with the feature selection 
filtering, again five clusters were generated, with 
56, 3, 12, 77, and 67 records in each cluster. 

Two-Step method clustered records (from T/F 
groups) into two groups with 52 and 159 records in 
each cluster, and three clusters (with 109, 52 and 54 
records in each cluster) were created for the filtered 
dataset using feature selection criteria. Two clusters 
(52 and 195 records and 163 and 52 records) were 
created with or without the feature selection 
filtering; when the model applied on H/B/F/P/T 
groups.  

When halolysin proteins (T group) were 
compared with other proteases and termitase (F 
group), the C5.0 model generated a decision tree 
with a depth of 2 and cross-validation of 98.1 ± 0.8. 
The most important feature used to build the tree 
was the frequency of oxygen. If the value of this 
feature was equal to or less than 0.111, the proteins 
fell into F category (bacterial, fungal and plant 
proteases and termitase); otherwise they were put 
into the T category. In this category, if the 
frequency of Tyr was equal to or less than 0.036, 
they were placed in the F subgroup; otherwise they 
were put into the T subgroup (halolysin proteins). 
When a 10-fold cross-validation was applied to the 
same dataset, again a tree with a depth of 2 and 
cross-validation of 97.6.1 ± 1.1 was created. The 
same protein features and values were used to 
create tree branches. When the same models were 
applied to datasets using the feature selection 
filtering, a tree with the same depth (2) and cross-
validation of 96.3 ± 1.1 and 89.1 ± 1.0 were 

generated for C5.0 and C5.0 with a 10-fold cross-
validation, respectively. The frequency of Glu-Leu 
features were used to create the first branch (value 
< 0.007 in F mode and > 0.007 T Mode); in T mode 
if the frequency of Gly was equal to or less than 
0.121 they were put in F mode (proteases and 
termitase); otherwise they were in T mode 
(halolysin proteins). 

When the H/B/F/P/T dataset was used, the C5.0 
model generated a decision tree with a depth of 5 
and cross-validation of 86.9 ± 1.7. The most 
important feature used to build the tree was the 
count of sulphur. If the value of this feature was 
equal to or less than 18, the proteins fell into the 
bacterial proteases category; otherwise they were 
put into the plant proteases category. In the 
bacterial proteases subgroup, the frequency of Glu-
Ser was used to create the next tree branches, with 
< 0.009 as the bacterial protein mode and > 0.009 
as the halolysin protein mode. In the plant proteases 
subgroup, if the value for the frequency of other 
residues was equal to or less than 0.164, they were 
placed in the fungal proteases subgroup; otherwise 
they were put into the plant proteases subgroup. 
When a 10-fold cross-validation was applied to the 
same dataset, again a tree with a depth of 5 and 
cross-validation of 85.5 ± 1.5 was created. The 
same protein features and values were used to 
create tree branches. When the same models were 
applied to datasets using feature selection filtering, 
a tree with a depth of 4 and cross-validation of 87.5 
± 2.2 and 86.1 ± 2.5 were generated for C5.0 and 
C5.0 with 10-fold cross-validation. The same 
protein features were used to create the first and 
second subgroups. 

In the C&RT node, a tree with a depth of 1 was 
created, and the most important feature used to 
build the tree was the frequency of Gly - Gly (value 
< 0.026 for the F mode and > 0.026 for the T mode 
(the halolysin protein). The same results were 
obtained when the feature selection was selected. 
When the halolysin was compared with each 
individual class of other proteins (H/B/F/P/T 
groups), a tree with a depth of 4 was created, and 
the most important feature used to build the tree 
was the count of sulphur (value < 18.5 for bacterial 
and > 18.5 for plant proteases). The frequency of 
Gly - Gly was used to create the second level for 
the first subgroups (< 0.026 for bacterial and > 
0.026 for halolysin proteins) and the frequency of 
Glu (< 0.032 for plant and >0.032 for bacterial 
proteases). The same results were obtained when a 
feature selection was used. 

In the Quest modeling, a tree with a depth of 2 
was generated, and the frequency of Gly - Gly 
(with a value equal to or less than 0.021) was used 
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to create the first tree branches (the F mode) and 
the frequency of Ala-Lys was used to generate the 
next subgroup (< 0 for the halolysin protein and > 0 
for other proteases and termitase). The same results 
occurred when a feature selection filtering was 
applied. When H/B/F/P/T groups compared, a tree 
with a depth of 2 was generated, and the count of 
Cys (with a value equal to or less than 7.654) was 
used to create the first tree branches (bacterial 
proteases) and the frequency of Gly - Gly was used 
to generate the next subgroup (< 0.021 for bacterial 
proteases and > 0.021 for halolysin proteins). In the 
plant subgroup, the frequency of Lys (0.113) was 
used to create fungal and plant proteases. The same 
results occurred when a feature selection filtering 
was applied. 

A tree with a depth of 2 was generated when the 
CHAID model was applied to the data with and 
without feature selection. If the frequency of Lie-
Ala was < 0.005, the mode was F; if it was > 0.005 
and the frequency of Lie-Ala was equal to or less 
than 0.006, the mode was T. The same trees with 
the same features and values were generated when 
exhaustive CHAID models were applied on 

datasets with and without the feature selection. 
When H/B/F/P/T groups were compared and the 
CHAID model was applied to the data with and 
without the feature selection, a tree with a depth of 
3 was generated. If the count of hydrophobic 
residues was < 180, the mode was bacterial 
proteases; if it was > 417, the mode was plant 
proteases. If the count of hydrophobic residues 
range from 180 to 196 and the frequency of 
hydrogen was equal to or less than < 0.492, the 
mode was bacterial proteases; otherwise it was the 
termitase. When the counts of hydrophobic residues 
were > 196 and < 225, it formed the next branch, 
and three other branches were created when the 
same feature was between 225 and 268, 268 and 
341, 341 and 386, and 386 and 417 (figure 3). The 
same trees with the same features and values were 
generated when exhaustive CHAID models were 
applied on datasets with and without the feature 
selection. The best percentage of correctness, 
performance evaluation, and mean correctness in 
the decision tree models were observed in the C5.0 
model, followed by the CR&T, CHAID, and finally 
the Quest models (table 2). 

 

 
 
Figure 3. A decision tree generated by the CHAID modeling method without feature selection filtering, comparing 
halolysin proteins with the others (T/F groups). 
 
Table 2. Percentage of correctness, wrongness, performance evaluation (T & F), and mean correct and incorrect in 
various decision tree models, in datasets without feature selection (a) and with feature selection (b), comparing 
halolysin proteins with others (T/F groups). 
 

(a) 

 % Correct % Wrong Performance 
evaluation (T) 

Performance 
evaluation (F) 

C5.0 100 0 3.173 0.043 
C5.0 with 10-fold  
validation 100 0 3.173 0.043 
CR&T 98.14 1.6 - - 
QUEST 99.53 0.47 - - 
CHAID 99.53 0.47 - - 
Exhaustive CHAID 99.53 0.47 - - 

(b) 
C5.0 99.53 0.47 3.173 0.038 
C5.0 with 10-fold validation 99.53 0.47 3.173 0.038 
CR&T 98.14 1.84 2.933 0.033 
QUEST 99.53 0.47 3.173 0.038 
CHAID 100 0 3.173 0.043 
Exhaustive CHAID 100 0 3.173 0.043 
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The GRI node analysis created 100 rules with 
215 valid transactions with minimum and 
maximum support of 3.26% and 8.37%, 
respectively. Maximum confidence reached 100% 
and minimum confidence decreased to 50.0%. 
When the feature selection was used, minimum 
support, maximum support, maximum confidence, 
and minimum confidence changed to 0.47%, 9.3%, 
100%, and 50.0%. The highest confidence (100%) 
and support (4.19%) occurred when the frequency 
of oxygen was > 0.12 and count of hydrogen was < 
3652 or N-terminal was Met or both together. 
When the feature selection filtering was applied the 
highest confidence and support were 100% and 
3.72 when the frequency of Gly - Gly was > 0.022 
and the frequency of Ala-Lys < 0.0001 or the 
frequency of Gly was higher than 0.008. When the 
halolysin protein was compared with other 
individual protein classes (H/B/F/P/T groups), a 
GRI node analysis created 100 rules with 215 valid 
transactions with minimum and maximum support 
of 14.88% and 17.21%, respectively. Maximum 
confidence reached 100% and minimum confidence 
decreased to 97.22%. When the feature selection 
was used, minimum support, maximum support, 
maximum confidence, and minimum confidence 
changed to 14.88%, 17.67%, 100%, and 97.74%. 
The highest confidence (100%) and support 
(16.28%) in both methods (with/without feature 
selection filtering) occurred when the count of Lys 
was lower than 28.5, the frequency of Gly-Pro was 
greater than 0.002, and the frequency of Asp-Leu 
was less than 0.006 (table 3). 

Statistical analyses showed significant 
differences (p < 0.01) in positively and negatively 
charged amino acids between halolysins and other 
proteins. Halolysin proteins had higher average of 
negatively charged amino acids comparing to other 
proteins. Asp and Glu, two negatively charged 
amino acids with average of 0.091 and 0.053, 
showed higher average comparing to other amino 
acids in halolysin proteins. More than 20% of 
amino acids in halolysin proteins were negatively 
charged comparing with just 9% in other proteins; 
resulting in at least two times more negatively 
charged amino acids presence in halophilic 
proteins. The Ratio of negatively charged amino 
acids to positively charged amino acids in halolysin 
and other proteins were 3 and 1.3 times.  

A significant difference (p < 0.01) was found 
in 21 features of primary protein structure in 
halolysins and plant proteases. Positively 
charged amino acids (such as Lys, Arg and 
His) showed higher frequencies in plant 
proteases. A highly significant difference (p 

<0.0001) was found in hydrophobic amino 
acids (Val, Pro, Phe, Ile, Leu and Met) of plant 
proteases and halolysin proteins resulting in the 
same significant differences of hydrophobic 
compounds in those proteins. Cys and Met, as 
N-terminal amino acids, were found to be more 
frequent in plant proteases than halolysins and 
other proteases studied in this paper forming 
more di-sulphid bonds in plant proteases.  In 
halolysins, about 50% of Cys were in the N-
terminal position while just 20% of the N-
terminal amino acid in plant proteases was Cys.  

A significant difference (p < 0.05) was found in 
aliphatic index in plant proteases and halolysin 
proteins, which could be due to aliphatic amino 
acids (Ile, Val, Pro, Met and Leu). More beta-strand 
was found in plant proteases which could be due to 
higher number of Lys, His and Cys. The frequency 
of Pro in plant proteases was higher than its 
frequency in halolysin proteins (14.11 ± 9.54 and 
13.78 ± 1.09, (mean ± SD), respectively). Some 
dipeptid bonds (such as Met-Met, Met-Cys and 
Cys-Cys) were more frequent in plant proteases and 
they could contribute in more beta-strand 
formation. 
 
Discussion 
 

Salt dependence and salt tolerance 
microorganisms are newly discovered 
microorganisms, classified as new taxa with new 
names within the microbial taxonomy. Some use 
the term for all organisms that require some level of 
salt for growth, including concentrations around 35 
g/l as found in seawater. Halobacterium species are 
obligatory halophilic microorganisms that have 
been adapted to optimal growth under conditions of 
extremely high salinity. They contain a 
correspondingly high concentration of salts 
internally and exhibit a variety of unusual and 
unique molecular characteristics. Since their 
discovery, extreme halophiles have been studied 
extensively by chemists, biochemists, 
microbiologists, and molecular biologists to define 
both molecular diversity and universal features of 
life. A notable list of early research milestones on 
halophiles includes the discovery of a cell envelope 
composed of an S-layer glycoprotein, Archaea l 
either lipids and purple membrane, and metabolic 
and biosynthetic processes operating at saturating 
salinities. These early discoveries established the 
value of investigations directed at extremophiles 
and set the stage for pioneering phylogenetic 
studies leading to the three-domain view of life and 
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Table 3: The association rules found in the data by the generalized rule induction (GRI) method, comparing halolysin 
proteins with the others (T/F groups) 
 

Antecedent Confidence % 
Freq.  of Gly - Gly > 0.022 and Freq.  of Ala -Lys < 0.000 100.0 
Freq.  of Glu-Leu > 0.008 and Freq.  of Gly > 0.122 100.0 
Freq.  of Glu-Leu > 0.008 and Freq.  of Phe < 0.018 and Freq.  of Gly > 0.122 100.0 
Freq.  of Glu-Leu > 0.008 and Freq.  of Glu > 0.048 and Ile < 18.500 100.0 
Freq.  of Glu-Leu > 0.008 and Freq.  of Asp > 0.083 and Ile < 18.500 100.0 
Freq.  of Glu-Leu > 0.008 and Phe < 9.500 and Freq.  of Gly > 0.122 100.0 
Freq.  of Glu-Leu > 0.008 and Freq.  Positively Charged < 0.048 and Ile < 18.500 100.0 
Freq.  of Glu-Leu > 0.008 and Freq.  Negatively Charged > 0.134 and Ile < 18.500 100.0 
Freq.  of Glu-Leu > 0.008 and Positively Charged residues < 25.500 and Freq.  of Gly > 0.122 100.0 
Freq.  of Glu-Leu > 0.008 and Isoelectric point < 4.480 and Ile < 18.500 100.0 
Freq.  of Gly > 0.122 and Isoelectric point < 4.480 100.0 
Freq.  of Glu-Leu > 0.008 and Phe < 9.500 and Freq.  sulphur < 0.002 100.0 
Freq.  of Glu-Leu > 0.008 and Freq.  Positively Charged < 0.048 and Freq.  Positively Charged > 0.046 100.0 
Freq.  of Glu-Leu > 0.008 and Freq.  Negatively Charged > 0.134 and Isoelectric point > 4.385 100.0 
Freq.  of Glu-Leu > 0.008 and Positively Charged residues < 25.500 and Freq.  sulphur < 0.002 100.0 
Freq.  of Glu-Leu > 0.008 and Freq.  sulphur < 0.002 and Isoelectric point < 4.480 100.0 
Freq.  of Glu-Leu > 0.008 and Isoelectric point < 4.480 and Isoelectric point > 4.385 100.0 
Freq.  Negatively Charged > 0.198 100.0 
Isoelectric point < 4.170 and Isoelectric point > 4.040 100.0 
Freq.  of Gly - Gly > 0.022 and Isoelectric point < 4.480 88.89 
Freq.  of Glu-Leu > 0.008 and Ile < 18.500 88.89 
Freq.  of Glu-Leu > 0.008 and Phe < 9.500 and Isoelectric point > 4.385 87.5 
Freq.  of Glu-Leu > 0.008 and Freq.  Positively Charged < 0.048 and Isoelectric point > 4.385 87.5 
Freq.  of Glu-Leu > 0.008 and Positively Charged residues < 25.500 and Isoelectric point > 4.385 87.5 
Freq.  of Glu-Leu > 0.008 and Isoelectric point < 4.480 72.73 
Freq.  of Gly - Gly > 0.022 66.67 
Isoelectric point < 4.480 60.0 
Freq.  of Gly > 0.122 57.14 
Freq.  Negatively Charged > 0.134 and Isoelectric point < 4.480 55.56 
Freq.  of Gly - Gly > 0.016 55.0 
Freq.  of Ala -Lys < 0.000 and Isoelectric point < 5.265 55.0 
Freq.  of Asp > 0.078 and Positively Charged residues < 32.500 55.0 
Lysine < 9.500 and Isoelectric point < 4.480 52.94 
Freq.  of Asp-Gln > 0.004 and Isoelectric point < 5.025 52.63 
Freq.  of lie-Arg < 0.000 and Isoelectric point < 5.065 50.0 
Freq.  of Asp-Gln > 0.004 and Freq.  of Ile < 0.042 50.0 
Freq.  of Asp-Gln > 0.004 and Freq.  of Gly > 0.106 and Freq.  Positively Charged < 0.062 50.0 
Freq.  of Asp-Gln > 0.004 and Freq.  of Glu > 0.042 and Isoelectric point < 5.025 50.0 
Freq.  of Asp-Gln > 0.004 and Phe < 9.500 and Isoelectric point < 5.445 50.0 
Freq.  of Asp-Gln > 0.004 and Positively Charged residues < 32.500 and Freq.  of Asp > 0.058 50.0 
Freq.  of Ala -Lys < 0.000 and Freq.  Negatively Charged > 0.114 50.0 
Freq.  of Ile < 0.038 and Isoelectric point < 5.555 50.0 
Freq.  of Phe < 0.018 and Isoelectric point < 5.610 50.0 
Freq.  of Asp > 0.078 and Phe < 10.500 50.0 
Ile < 19.500 and Isoelectric point < 5.405 50.0 
Phe < 9.500 and Isoelectric point < 5.265 50.0 
Freq.  of Ala -Asp > 0.010 50.0 
Freq.  of Ala - Cys > 0.002 and Isoelectric point < 4.760 50.0 
Freq.  of Lysine < 0.018 and Isoelectric point < 5.155 50.0 
Freq.  of Asp > 0.078 and Isoelectric point > 4.385 50.0 
Lysine < 9.500 and Freq.  of Gly > 0.114 50.0 
Lysine < 9.500 and Freq.  of Phe < 0.018 and Positively Charged residues < 28.500 50.0 
Lysine < 9.500 and Lysine > 5.500 and Positively Charged residues < 25.500 50.0 
Lysine < 9.500 and Phe < 9.500 and Freq.  Positively Charged < 0.052 50.0 
Lysine < 9.500 and Positively Charged residues < 25.500 and Isoelectric point < 4.760 50.0 
Freq.  Positively Charged < 0.048 and Isoelectric point < 4.480 50.0 
Freq.  Negatively Charged > 0.134 and Freq.  Positively Charged < 0.050 50.0 
Positively Charged residues < 25.500 and Isoelectric point < 4.760 50.0 
Isoelectric point < 4.480 and Isoelectric point > 4.285 50.0 
Isoelectric point < 4.170 50.0 
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classification of Halobacterium as a member of the 
Archaea l domain. It has been shown that some 
proteins and enzymes are responsible for living 
organism’s tolerance against hypersaline 
conditions; therefore defining features contribute to 
this valuable characteristics of proteins paves roads 
toward engineering new strains of plants growing in 
harsh salty conditions. To date, some studies have 
looked at phylogeny, taxonomy and nomenclature 
of halophilic strains and various models have been 
employed to determine the most important features 
that contribute to these organisms’ ability to stand 
hypersalinity media. In this study, we applied 
different modeling techniques to study more than 
70 features of some halophilic proteins and 
compared them with similar proteases and termitase 
(found after multiple alignments) in an attempt to 
understand their ability to withstand salty 
conditions. We used different screening, clustering, 
and decision tree modeling on two datasets: one 
with and the other without feature selection 
filtering. 

The phylogenic tree (figure 1) showed that 
halophilic organisms can be placed in a separate 
phylum between eukaryotes and bacteria, Archea, 
which is in line with previous studies (Pruess et al., 
2003; Li et al., 2008; Wimmer et al., 2008). 
Although the results of feature selection modeling 
showed that 83 features (from 252) had a value 
greater than 0.95, the frequency of Gly - Gly ranked 
as the most important feature (table 1), and it was 
used in some decision tree models to create the 
main subgroups and branches. The number of peer 
group (one group) did not change when feature 
selection filtering was applied but anomaly index 
cutoff decreased from 2.42 (without feature 
selection) to 1.92 (with feature selection) showing 
the positive effects of feature selection filtering on 
removing outliers. Although the number of records 
in the clusters changed between the models with 
and without feature selection, the number of 
clusters generated by K-Means modeling did not. In 
the TwoStep model, the number of clusters 
decreased from three (without feature selection) to 
just two (with feature selection) groups. 

The depth of trees generated by the various 
decision tree models varied from 1 (in the C&RT 
model with T/F comparison, with/without the 
feature selection dataset) to 5 (in the C5.0 model 
with 10-fold cross-validation on H/B/F/P/T groups) 
branches. The best cross-validation results were 
obtained in the C5.0 model when H/B/F/P/T groups 
compared. The protein features were used by 
various decision tree models to create trees varied 
from the count of sulphur (in the C5.0, C5.0 with 
10-fold cross-validation and C&RT model on 

H/B/F/P/T groups) to the frequency of Gly - Gly (in 
the C&RT T/F and Quest models) and the count of 
Cys, Leu-Ala and hydrophobic residues in Quest, 
T/F CHAID and H/BFPT CHAID. In most GRI 
association rules (100 rules), the frequency of Gly - 
Gly was used as an antecedent to support the rules. 
Although previous studies have shown the 
importance of acidic amino acids (Glu and Asp) 
residues  (Lanyi, 1969; Lanyi, 1974) and Gly (Lai, 
Hong et al. 2000; Robert, Le Marrec et al. 2000) in 
halophilic proteins, in this study, for the first time, 
we looked not only at individual amino acid 
composition, but also the importance of dipeptid 
amino acid composition in salt stability of these 
proteins and found Gly - Gly as the most important 
feature contributes to halotolerant capacity of these 
proteins.   Performance evaluations in the decision 
tree models tested were found to be the same in all 
models. No significant differences in the percent of 
correctness, performance evaluation, and mean 
correctness of various decision tree models were 
found when feature selected datasets were used, but 
when feature selection datasets were used the 
number of peer-groups in clustering models 
reduced significantly. 

Charged amino acids prevent charged ions from 
attaching to proteins and they have a significant 
role in stabilizing protein against salty conditions, 
and keep water molecules around these 
components. Sequence comparisons showed that, in 
general, the halophilic proteins contain an excess of 
negatively charged amino acids over positively 
charged amino acids, and the number of negatively 
charged amino acid residues is higher than that in 
their non-halophilic homologs (Kushner and 
Onishi, 1966; Rao and Argos, 1981; Tokunaga et 
al., 2008). The additional negative charges are 
located mostly on the protein surface, presumably 
helping to stabilize the protein molecule by 
competing with the salt for hydration (Lanyi, 1974). 
It has also been proposed that hydrophobic 
interactions play an important role in the ability of 
these proteins to cope with the salt stress in a 
hypersaline environment (Mevarech et al., 2000; 
Kastritis et al., 2007; Memmi et al., 2008). It has 
been shown that negatively charged amino acids 
such as Asp and Glu may contribute to protein 
ability to resist salty conditions; as shown in a 
higher percentage of negatively charged amino acid 
residues (18.5%) in halophilic strains than its non-
halophilic counterparts (Pieper et al., 1998). Our 
finding were in line with the previous studies 
showing higher average of negatively charged 
amino acids in halolysin proteins with highly 
significant difference (p < 0.001) comparing to 
other proteins. It has been shown the cumulative 
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amount of Lys and Arg amino acids and even the 
content of Val were remarkably high in salt 
stability Archaea  (Ferrer et al., 1996). Higher 
hydrophobic amino acids found in plant proteins 
could be related to their function as inside proteins 
tending to aggregate as a sphere surrounded by 
water to increase their stability inside the cells and 
this may clarify more positively charged amino acid 
such as Lys, Arg and His found in plant proteases, 
although it have been mentioned that this feature 
may also contribute to salt stability in some 
organisms (White and Jacobs, 1990; Srimathi et al., 
2007; Valery et al., 2008). The results showed that 
Met was the sole N-terminal amino acid in 
halolysin proteins whereas other amino acids such 
as Cys, Thr, Tyr, Try and Leu were also found at 
this position of other proteases and termitase. In 
similar studies, it have been shown the N-terminal 
sequence of halophilic species play important role 
in their resistance to salty conditions (Baker et al., 
1992; Wakai et al., 1995; Ferrer et al., 1996; Ihara 
et al., 1997; Porciero et al., 2005). A significant 
difference (p<0.05) in aliphatic index was found 
between plant proteases and halolysin proteins 
which could be due to the presence of more 
aliphatic amino acids such as Ile, Val, Pro, Met and 
Leu in plant proteases and this difference or higher 
number of dipeptid bonds may be responsible for 
more beta-strands in plant proteases (Hose et al., 
2001; Lahav et al., 2002; Mishra and Jha, 2009). 

We analyzed the performance of different 
screening, clustering, and decision tree algorithms 
for discriminating halophilic and non-halophilic 
proteins. Our results showed that the amino acid 
composition can be used to discriminate between 
protein groups. We found that most of the 
mentioned algorithms can be used to discriminate 
between halophilic and non-halophilic proteins with 
accuracy in the range of 98–100 %. Our analysis 
detected no significant difference in performance 
between different methods used in this paper. 
Interestingly, all decision tree models had a similar 
accuracy (higher than 98 %), and no differences 
were observed between analysis with and without 
feature selection. The best performance and 
correctness results were obtained with C5.0 and 
CHAID algorithms. Thus, we suggest that these 
decision tree models can be used as an effective 
tool to discriminate halophilic and non-halophilic 
proteins. 
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