##plugins.themes.bootstrap3.article.main##

Sepideh sadat Hosseini Shadi Mehrzad Halimeh Hassanzadeh Hamid Reza Bidkhori Mahdi Mirahmadi Madjid Momeni-Moghaddam Fatemeh Sadeghifar Moein Farshchian

Abstract

     Mesenchymal stem/stromal cells (MSCs) as one of the most important types of adult stem cells secrete a variety of immunomodulatory cytokines. However, their immunomodulatory features strongly depend on the molecular cross-talk between cells and the surrounding microenvironment. Hence, some strategies were proposed to empower their beneficial effects during cell-therapeutic procedures to avoid confusing results. Licensing the cells with chemical compounds could be considered as one of the most applicable methods for induction of anti-inflammatory status in the cells. Human chorionic gonadotropin (hCG) is a pregnancy related hormone which has been shown to be essential for the establishment of a successful pregnancy. HCG supports the implantation of fetus in the maternal endometrium, due to its immunomodulatory effects. Moreover, the regulatory role of hCG has been previously mentioned in case of some autoimmune-based diseases. In the present study, the capacity of this hormone for induction of different immune-encountered genes expression was examined in primary cultures of human adipose tissue derived mesenchymal stem cells (Ad-MSCs). In this regard, Ad-MSCs were exposed to 10 IU of hCG for 72 hours. Molecular studies via quantitative Real-time PCR (qRT-PCR) experiments were performed to detect gene expression modifications based on the application of SYBR Green as the fluorescent dye and in comparison to the RPLP0 as the housekeeping gene. Results confirmed that hCG significantly upregulated TSG-6, TGF-β1, IL-1β and IL-6 expression levels comparing with the control group, while it downregulates COX-2 expression, and had no statistically significant effects on IL-10 andTDO2. In conclusion, priming Ad-MSCs with hCG may enhance the proliferation and immunoregulatory potential of these cells, although it needs further investigations to reveal involved molecular pathways.

Article Details

Keywords

Mesenchymal stem cells, Human Chorionic Gonadotropin, Pregnancy, Immunomodulation, Pretreatment

References
Ander S. E., Diamond M. S. and Coyne C. B. (2019) Immune responses at the maternal-fetal interface. Science immunology 4.

Basu A., Das A. S., Sharma M., Pathak M. P., Chattopadhyay P., Biswas K. and Mukhopadhyay R. (2017) STAT3 and NF-κB are common targets for kaempferol-mediated attenuation of COX-2 expression in IL-6-induced macrophages and carrageenan-induced mouse paw edema. Biochemistry and biophysics reports 12:54-61.

Caplan A. I. (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of cellular physiology 213:341-347.

Chaplin D. D. (2010) Overview of the immune response. Journal of Allergy and Clinical Immunology 125:S3-S23.

Dyer D. P., Salanga C. L., Johns S. C., Valdambrini E., Fuster M. M., Milner C. M., Day A. J. and Handel T. M. (2016) The anti-inflammatory protein TSG-6 regulates chemokine function by inhibiting chemokine/glycosaminoglycan interactions. Journal of Biological Chemistry 291:12627-12640.

English K., Ryan J., Tobin L., Murphy M., Barry F. and Mahon B. P. (2009) Cell contact, prostaglandin E2 and transforming growth factor beta 1 play non‐redundant roles in human mesenchymal stem cell induction of CD4+ CD25Highforkhead box P3+ regulatory T cells. Clinical & Experimental Immunology 156:149-160.

Fettke F., Schumacher A., Canellada A., Toledo N., Bekeredjian-Ding I., Bondt A., Wuhrer M., Costa S.-D. and Zenclussen A. C. (2016) Maternal and fetal mechanisms of B cell regulation during pregnancy: human chorionic gonadotropin stimulates B cells to produce IL-10 while alpha-fetoprotein drives them into apoptosis. Frontiers in immunology 7:495.

Han D., Huang W., Li X., Gao L., Su T., Li X., Ma S., Liu T., Li C. and Chen J. (2016a) Melatonin facilitates adipose‐derived mesenchymal stem cells to repair the murine infarcted heart via the SIRT1 signaling pathway. Journal of pineal research 60:178-192.

Han J.-S., Rahaman K. A., Seo J.-E., Hasan M., Lee K.-T., Min H., Lee K. M., Park J.-H., Kim H. J. and Kim K. H. (2016b) Human chorionic gonadotropin (hCG) sub-chronic administration mediated MMP-9 activities and cytokine association deteriorate experimental autoimmune encephalomyelitis (EAE) condition in mice model. Journal of Pharmaceutical Investigation 46:685-695.

Hoesel B. and Schmid J. A. (2013) The complexity of NF-κB signaling in inflammation and cancer. Molecular cancer 12:86.

Hu C. and Li L. (2018) Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. Journal of cellular and molecular medicine 22:1428-1442.

Khil L.-Y., Jun H.-S., Kwon H., Yoo J., Kim S., Notkins A. and Yoon J.-W. (2007) Human chorionic gonadotropin is an immune modulator and can prevent autoimmune diabetes in NOD mice. Diabetologia 50:2147-2155.

Koldehoff M., Katzorke T., Wisbrun N., Propping D., Wohlers S., Bielfeld P., Steckel N., Beelen D. and Elmaagacli A. (2011) Modulating impact of human chorionic gonadotropin hormone on the maturation and function of hematopoietic cells: Journal of Leukocyte Biology. Embryology–Updates and Highlights on Classic Topics 116.

Lange-Consiglio A., Perrini C., Tasquier R., Deregibus M. C., Camussi G., Pascucci L., Marini M. G., Corradetti B., Bizzaro D. and De Vita B. (2016) Equine amniotic microvesicles and their anti-inflammatory potential in a tenocyte model in vitro. Stem cells and development 25:610-621.

Liu S., Diao L., Huang C., Li Y., Zeng Y. and Kwak-Kim J. Y. (2017) The role of decidual immune cells on human pregnancy. Journal of reproductive immunology 124:44-53.

Mittal M., Tiruppathi C., Nepal S., Zhao Y. Y., Grzych D., Soni D., Prockop D. J. and Malik A. B. (2016) TNFalpha-stimulated gene-6 (TSG6) activates macrophage phenotype transition to prevent inflammatory lung injury. Proc Natl Acad Sci U S A 113:E8151-E8158.

Mor G., Cardenas I., Abrahams V. and Guller S. (2011) Inflammation and pregnancy: the role of the immune system at the implantation site. Annals of the New York Academy of Sciences 1221:80.

Netea M. G., Joosten L. A., Li Y., Kumar V., Oosting M., Smeekens S., Jaeger M., Ter Horst R., Schirmer M. and Vlamakis H. (2016) Understanding human immune function using the resources from the Human Functional Genomics Project. Nature medicine 22:831.

Ostensen M., Villiger P. M. and Forger F. (2012) Interaction of pregnancy and autoimmune rheumatic disease. Autoimmunity Reviews 11:A437-446.

Pazos M., Sperling R. S., Moran T. M. and Kraus T. A. (2012) The influence of pregnancy on systemic immunity. Immunologic research 54:254-261.

Poloski E., Oettel A., Ehrentraut S., Luley L., Costa S.-D., Zenclussen A. C. and Schumacher A. (2016) JEG-3 trophoblast cells producing human chorionic gonadotropin promote conversion of human CD4+ FOXP3− T cells into CD4+ FOXP3+ regulatory T cells and foster T cell suppressive activity. Biology of reproduction 94: 101-111.

Regmi S., Pathak S., Kim J. O., Yong C. S. and Jeong J.-H. (2019) Mesenchymal stem cell therapy for the treatment of inflammatory diseases: challenges, opportunities, and future perspectives. European journal of cell biology 98: 5-8.

Rustenhoven J., Aalderink M., Scotter E. L., Oldfield R. L., Bergin P. S., Mee E. W., Graham E. S., Faull R. L., Curtis M. A., Park T. I. and Dragunow M. (2016) TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. Journal of Neuroinflammation 13:37.

Schumacher A. (2017) Human chorionic gonadotropin as a pivotal endocrine immune regulator initiating and preserving fetal tolerance. International journal of molecular sciences 18:2166.

Schumacher A., Brachwitz N., Sohr S., Engeland K., Langwisch S., Dolaptchieva M., Alexander T., Taran A., Malfertheiner S. F. and Costa S.-D. (2009) Human chorionic gonadotropin attracts regulatory T cells into the fetal-maternal interface during early human pregnancy. The Journal of Immunology 182:5488-5497.

Schumacher A., Costa S.-D. and Zenclussen A. C. (2014) Endocrine factors modulating immune responses in pregnancy. Frontiers in immunology 5:196.

Schumacher A., Heinze K., Witte J., Poloski E., Linzke N., Woidacki K. and Zenclussen A. C. (2013) Human chorionic gonadotropin as a central regulator of pregnancy immune tolerance. The Journal of Immunology 190:2650-2658.

Segerer S. E., Müller N., Van Den Brandt J., Kapp M., Dietl J., Reichardt H. M., Rieger L. and Kämmerer U. (2009) Impact of female sex hormones on the maturation and function of human dendritic cells. American Journal of Reproductive Immunology 62:165-173.

Susheelamma C. J., Pillai S. M. and Nair S. A. (2018) Oestrogen, progesterone and stem cells: the discordant trio in endometriosis? Expert reviews in molecular medicine 20.

Taneja V. (2018) Sex hormones determine immune response. Frontiers in immunology 9:1931.

Tang J., Xiong J., Wu T., Tang Z., Ding G., Zhang C., Wang S. and Liu Y. (2014) Aspirin treatment improved mesenchymal stem cell immunomodulatory properties via the 15d-PGJ2/PPARγ/TGF-β1 pathway. Stem cells and development 23:2093-2103.

Theofanakis C., Drakakis P., Besharat A. and Loutradis D. (2017) Human chorionic gonadotropin: the pregnancy hormone and more. International journal of molecular sciences 18:1059.

Travis M. A. and Sheppard D. (2014) TGF-beta activation and function in immunity. Annual Review of Immunology 32:51-82.

Ushigoe K., Irahara M., Fukumochi M., Kamada M. and Aono T. (2000) Production and regulation of cytokine-induced neutrophil chemoattractant in rat ovulation. Biology of reproduction 63:121-126.

Volarevic V., Gazdic M., Markovic B. S., Jovicic N., Djonov V. and Arsenijevic N. (2017) Mesenchymal stem cell‐derived factors: Immuno‐modulatory effects and therapeutic potential. Biofactors 43:633-644.

Wan H., Versnel M. A., Leijten L. M., van Helden‐Meeuwsen C. G., Fekkes D., Leenen P. J., Khan N. A., Benner R. and Kiekens R. C. (2008) Chorionic gonadotropin induces dendritic cells to express a tolerogenic phenotype. Journal of leukocyte biology 83:894-901.

Wang Q., Ding G. and Xu X. (2016) Immunomodulatory functions of mesenchymal stem cells and possible mechanisms. Histology and histopathology 31:949-959.

Yoshimura T., Inaba M., Sugiura K., Nakajima T., Ito T., Nakamura K., Kanzaki H. and Ikehara S. (2003) Analyses of dendritic cell subsets in pregnancy. American Journal of Reproductive Immunology 50:137-145.
How to Cite
HosseiniS. sadat, MehrzadS., HassanzadehH., BidkhoriH. R., MirahmadiM., Momeni-MoghaddamM., SadeghifarF., & FarshchianM. (2020). Immunosuppressive Effects of Human Chorionic Gonadotropin (hCG) on Mesenchymal Stromal Cells. Journal of Cell and Molecular Research, 11(2), 90-98. https://doi.org/10.22067/jcmr.v11i2.85667
Section
Research Articles