##plugins.themes.bootstrap3.article.main##

Azadeh Haghighitalab Maryam M. Matin Fatemeh Khakrah Ahmad Asoodeh Ahmad Reza Bahrami

Abstract

     Despite the prominent therapeutic potentials of stem cells, their use in cell therapy has been challenged with some unreproducible and inconsistent outcomes in addition to the risk of rejection and tumorigenesis. Gaining novel insights to the importance of the conditioned medium, secretory factors and extracellular vesicles as the functional components of the cultured stem cells, suggested the idea of substituting the cells with their cell-free counterparts. Biological properties of these products are influenced by the cues received from their microenvironment. Hence, providing optimal and fully defined culture conditions is essential for their preparation. Fetal bovine serum (FBS), one of the most routine supplements of cell culture, is enriched by endogenous extracellular vesicles (EVs). These EVs will affect the yield, purity and functional features of the cell-free products. Here, we endeavored to examine and compare three different methods including ultrasonication, ultrafiltration and polymer-based precipitation, to deplete EVs from FBS. We chose easy to perform and fast methods with the capacity for high-throughput applications. Based on our observations, although all examined methods were able to deplete EVs from FBS to some extent, polymer-based precipitation could be considered as the method of choice with minimal consequences on the biological requirements of FBS to support cell growth and characteristics. Due to similarities between FBS and some other biological solutions, this strategy would be suitable for EV-depletion from other liquids with high concentrations of proteins and nutrients. Moreover, it could be applied for preparation of optimal culture conditions for nanoparticle applications.

Article Details

Keywords

Extracellular vesicle-depletion, Exosome, Polyethylene glycol, Ultrafiltration, Ultrasonication, Fetal bovine serum

References
Ahmadian Kia N., Bahrami A. R., Ebrahimi M., Matin M. M., Neshati Z., Almohaddesin M. R., Aghdami N. and Bidkhori H. R. (2011) Comparative analysis of chemokine receptor's expression in mesenchymal stem cells derived from human bone marrow and adipose tissue. Journal of Molecular Neuroscience 44:178-185.
Angelini F., Ionta V., Rossi F., Miraldi F., Messina E. and Giacomello A. (2016) Foetal bovine serum-derived exosomes affect yield and phenotype of human cardiac progenitor cell culture. Bioimpacts 6:15-24.
Atlas RM. (1993) Handbook of microbiological media. boca raton, Fla, USA: CRC Press.
Beninson L. A. and Fleshner M. (2015) Exosomes in fetal bovine serum dampen primary macrophage IL-1beta response to lipopolysaccharide (LPS) challenge. Immunology Letters 163:187-192.
Choi J. R., Yong K. W. and Nam H. Y. (2019) Current status and perspectives of human mesenchymal stem cell therapy. Stem Cells International 2019:4762634.
Chu D. T., Nguyen Thi Phuong T., Tien N. L. B., Tran D. K., Minh L. B., Thanh V. V., Gia Anh P., Pham V. H. and Thi Nga V. (2019) Adipose tissue stem cells for therapy: an update on the progress of isolation, culture, storage, and clinical application. Journal of Clinical Medicine 8: pii: E917 .
Colombo M., Raposo G. and Théry C. (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology 30:255-289.
Colter D. C., Class R., DiGirolamo C. M. and Prockop D. J. (2000) Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proceedings of the National Academy of Sciences of the United States of America 97:3213-3218.
Cowper M., Frazier T., Wu X., Curley L., Ma M. H., Mohuiddin O. A., Dietrich M., McCarthy M., Bukowska J. and Gimble J. M. (2019) Human platelet lysate as a functional substitute for fetal bovine serum in the culture of human adipose derived stromal/stem cells. Cells 8: pii: E724.
Czapla J., Matuszczak S., Kulik K., Wisniewska E., Pilny E., Jarosz-Biej M., Smolarczyk R., Sirek T., Zembala M. O., Zembala M., et al. (2019) The effect of culture media on large-scale expansion and characteristic of adipose tissue-derived mesenchymal stromal cells. Stem Cell Research & Therapy 10:235.
Devireddy L. R., Myers M., Screven R., Liu Z. and Boxer L. (2019) A serum-free medium formulation efficiently supports isolation and propagation of canine adipose-derived mesenchymal stem/stromal cells. PLoS One 14:e0210250.
Dobosz K. M., Kuo-Leblanc C. A., Martin T. J. and Schiffman J. D. (2017) Ultrafiltration membranes enhanced with electrospun nanofibers exhibit improved flux and fouling resistance. Industrial & Engineering Chemistry Research 56: 5724-5733.
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D. and Horwitz E. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315-317.
Eitan E., Zhang S., Witwer K. W. and Mattson M. P. (2015) Extracellular vesicle-depleted fetal bovine and human sera have reduced capacity to support cell growth. Journal of Extracellular Vesicles 4:26373.
Gurunathan S., Kang M. H., Jeyaraj M., Qasim M. and Kim J. H. (2019) Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells 8: pii: E307.
Harvanova D., Tothova T., Sarissky M., Amrichova J. and Rosocha J. (2011) Isolation and characterization of synovial mesenchymal stem cells. Folia Biologica (Praha) 57:119-124.
He L., Zhu D., Wang J. and Wu X. (2019) A highly efficient method for isolating urinary exosomes. International Journal of Molecular Medicine 43:83-90.
Helwa I., Cai J., Drewry M. D., Zimmerman A., Dinkins M. B., Khaled M. L., Seremwe M., Dismuke W. M., Bieberich E., Stamer W. D., et al. (2017) A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One 12:e0170628.
Hemeda H., Giebel B. and Wagner W. (2014) Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells. Cytotherapy 16:170-180.
Hoogduijn M. J. and Lombardo E. (2019) Mesenchymal stromal cells anno 2019: dawn of thetherapeutic era? Concise review. STEM CELLS Translational Medicine 8:1126-1134.
Kornilov R., Puhka M., Mannerstrom B., Hiidenmaa H., Peltoniemi H., Siljander P., Seppanen-Kaijansinkko R. and Kaur S. (2018) Efficient ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum. Journal of Extracellular Vesicles 7:1422674.
Lehrich B. M., Liang Y. and Fiandaca M. S. (2019) Response to "Technical approaches to reduce interference of fetal calf serum derived RNA in the analysis of extracellular vesicle RNA from cultured cells". Journal of Extracellular Vesicles 8:1599681.
Lehrich B. M., Liang Y., Khosravi P., Federoff H. J. and Fiandaca M. S. (2018) Fetal bovine serum-derived extracellular vesicles persist within vesicle-depleted culture media. International Journal of Molecular Sciences 19: pii: E48.
Li P., Kaslan M., Lee S. H., Yao J. and Gao Z. (2017) Progress in exosome isolation techniques. Theranostics 7:789-804.
Li X., Corbett A. L., Taatizadeh E., Tasnim N., Little J. P., Garnis C., Daugaard M., Guns E., Hoorfar M. and Li I. T. S. (2019) Challenges and opportunities in exosome research-perspectives from biology, engineering, and cancer therapy. APL Bioengineering 3:011503.
Lobb R. J., Becker M., Wen S. W., Wong C. S., Wiegmans A. P., Leimgruber A. and Moller A. (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. Journal of Extracellular Vesicles 4:27031.
Ludwig A. K., De Miroschedji K., Doeppner T. R., Borger V., Ruesing J., Rebmann V., Durst S., Jansen S., Bremer M., Behrmann E., et al. (2018) Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales. Journal of Extracellular Vesicles 7:1528109.
Mannerstrom B., Paananen R. O., Abu-Shahba A. G., Moilanen J., Seppanen-Kaijansinkko R. and Kaur S. (2019) Extracellular small non-coding RNA contaminants in fetal bovine serum and serum-free media. Scientific Reports 9:5538.
Parisse P., Rago I., Ulloa Severino L., Perissinotto F., Ambrosetti E., Paoletti P., Ricci M., Beltrami A. P., Cesselli D. and Casalis L. (2017) Atomic force microscopy analysis of extracellular vesicles. European Biophysics Journal 46:813-820.
Patel G. K., Khan M. A., Zubair H., Srivastava S. K., Khushman M., Singh S. and Singh A. P. (2019) Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Scientific Reports 9:5335.
Pittenger M. F., Mackay A. M., Beck S. C., Jaiswal R. K., Douglas R., Mosca J. D., Moorman M. A., Simonetti D. W., Craig S. and Marshak D. R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143-147.
Ramasubramanian L., Kumar P. and Wang A. (2019) Engineering extracellular vesicles as nanotherapeutics for regenerative medicine. Biomolecules 10.
Ridolfi A., Brucale M., Montis C., Caselli L., Paolini L., Borup A., Boysen A., Loria F., van Herwijnen M., Kleinjan M., et al. (2019) AFM-based high-throughput nanomechanical screening of single extracellular vesicles. bioRxiv.
Riekstina U., Muceniece R., Cakstina I., Muiznieks I. and Ancans J. (2008) Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions. Cytotechnology 58:153-162.
Rosenow E. C. (1919) Studies on elective localization focal infection with special reference to oral sepsis'. Journal of Dental Research 1:205-267.
Salfinger Y., and Tortorello M. L. (2015) Compendium of methods for the microbiological examination of foods. Fifth (Ed.), American Public Health Association, Washington, D.C.
Schau H. P. (1986) J. F. MacFaddin, Media for isolation - cultivation - identification - maintenance of medical bacteria, Volume I. XI + 929 S., 163 Abb., 94 Tab. Baltimore, London 1985. Williams and Wilkins. ISBN: 0-683-05316-7. Journal of Basic Microbiology 26:240-240.
Shelke G. V., Lasser C., Gho Y. S. and Lotvall J. (2014) Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. Journal of Extracellular Vesicles 3.
Skliar M. and Chernyshev V. S. (2019) Imaging of extracellular vesicles by atomic force microscopy. The Journal of Visualized Experiments.
Tancharoen W., Aungsuchawan S., Pothacharoen P., Bumroongkit K., Puaninta C., Pangjaidee N., Narakornsak S., Markmee R., Laowanitwattana T. and Thaojamnong C. (2019) Human platelet lysate as an alternative to fetal bovine serum for culture and endothelial differentiation of human amniotic fluid mesenchymal stem cells. Molecular Medicine Reports 19:5123-5132.
Tao S. C., Guo S. C. and Zhang C. Q. (2017) Platelet-derived extracellular vesicles: an emerging therapeutic approach. International Journal of Biological Sciences 13:828-834.
Théry C., Amigorena S., Raposo G. and Clayton A. (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology 3:22.1-22.29.
Théry C., Witwer K. W., Aikawa E., Alcaraz M. J., Anderson J. D., Andriantsitohaina R., Antoniou A., Arab T., Archer F., Atkin-Smith G. K., et al. (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles 7:1535750.
Tran N. T., Trinh Q. M., Lee G. M. and Han Y. M. (2012) Efficient differentiation of human pluripotent stem cells into mesenchymal stem cells by modulating intracellular signaling pathways in a feeder/serum-free system. Stem Cells and Development 21:1165-1175.
Vaculik C., Schuster C., Bauer W., Iram N., Pfisterer K., Kramer G., Reinisch A., Strunk D. and Elbe-Burger A. (2012) Human dermis harbors distinct mesenchymal stromal cell subsets. Journal of Investigative Dermatology 132:563-574.
Wang Y., Zhang L., Li Y., Chen L., Wang X., Guo W., Zhang X., Qin G., He S. H., Zimmerman A., et al. (2015) Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. International Journal of Cardiology 192:61-69.
Weiss A. R. R. and Dahlke M. H. (2019) Immunomodulation by mesenchymal stem cells (MSCs): Mechanisms of action of living, apoptotic, and dead MSCs. Frontiers in Immunology 10:1191.
Willis G. R., Kourembanas S. and Mitsialis S. A. (2017) Toward exosome-based therapeutics: isolation, heterogeneity, and fit-for-purpose potency. Frontiers in Cardiovascular Medicine 4:63.
Witwer K. W., Buzas E. I., Bemis L. T., Bora A., Lasser C., Lotvall J., Nolte-'t Hoen E. N., Piper M. G., Sivaraman S., et al. (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. Journal of Extracellular Vesicles 2.
Yu L. L., Zhu J., Liu J. X., Jiang F., Ni W. K., Qu L. S., Ni R. Z., Lu C. H. and Xiao M. B. (2018) A comparison of traditional and novel methods for the separation of exosomes from human samples. BioMed Research International 2018:3634563.
Zakrzewski W., Dobrzynski M., Szymonowicz M. and Rybak Z. (2019) Stem cells: past, present, and future. Stem Cell Research & Therapy 10:68.
Zhang Z., Huang S., Wu S., Qi J., Li W., Liu S., Cong Y., Chen H., Lu L., Shi S., et al. (2019) Clearance of apoptotic cells by mesenchymal stem cells contributes to immunosuppression via PGE2. EBioMedicine 45:341-350.
How to Cite
HaghighitalabA., M. MatinM., KhakrahF., AsoodehA., & BahramiA. R. (2020). Cost-effective Strategies for Depletion of Endogenous Extracellular Vesicles from Fetal Bovine Serum. Journal of Cell and Molecular Research, 11(2), 42-54. https://doi.org/10.22067/jcmr.v11i2.85209
Section
Research Articles