Research Article

In silico Analysis of Determinant Factors in Microbial Protease Thermostability

Parisa Farrokh 1,2*, Fatemeh Salimi1

¹Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran ² Institute of Biological Sciences, Damghan University, Damghan, Iran

Received 7 January 2020

Accepted 16 February 2020

Abstract

Thermostable proteases are one of the pivotal enzymatic groups which play fundamental roles in biotechnologyrelated industries. The identification of bacterial thermostable enzymes through screening programs is a time and cost consuming process. So, extensive bioinformatics and experimental studies have been conducted to reveal thermo stabilizing factors. The current study was aimed to evaluate distinctive indicators among 33 thermostable and 10 mesostable proteolytic enzymes. The frequency of individual amino acids, aliphatic indexes, melting temperatures, isoelectric points, as well as, the frequency of AXXXA and GXXXG motifs were determined and compared among these enzymes. In addition, types of proteolytic enzymes and their active sites were assigned. Moreover, the frequency of alpha helixes, polar surface regions, and packing volumes of these enzymes with the known structures were characterized. Results showed that the frequency of Ala and AXXXA motifs were significantly higher in thermostable proteolytic enzymes, while they possess lower contents of Met, His, Lys and Leu in comparison to mesostable enzymes (P<0.05). According to statistical analysis, thermostable proteolytic enzymes indicated meaningful lower packing volumes than mesostable enzymes (P<0.05). Findings of the current study in addition to more detailed investigations on the thermostability mechanisms of various protein families are essential for designing more efficient industrial enzymes with functional properties at high temperatures.

Keywords: Bioinformatics analysis, Protein engineering, Proteolytic enzyme, Thermostability

Introduction

The application of biocatalysts in various industries is safer than using chemical compounds and has environmental advantages (Razzaq et al., 2019). Proteases, as one of the main industrial enzymes, are responsible for around 60% of the world enzyme market (Raveendran et al., 2018). Proteolytic enzymes constitute a very large and complex group of hydrolases. Despite the high diversity of proteases' functions and structures, they were simple classified to exo- or endo-proteases according to their site of cleavage (Souza et al., 2015). In addition, exo-peptidases can be further categorized into amino- and carboxy-peptidases (Souza et al., 2015). Proteolytic enzymes also can be grouped based on residues in their catalytic active sites into serine proteases (Patel, 2017), aspartic proteases, asparagine proteases, cysteine proteases (Dadshahi et al., 2016), metalloproteases (Abebe et al., 2014), glutamic proteases, threonine proteases or proteases with mixed or unknown catalytic mechanisms (Rawlings et al., 2007; Rawlings et al., 2017).

Proteases are widely produced by all organisms, including plants, animals, fungi, bacteria, and archaea. Microbial-derived proteases have been applied for commercial purposes due to easier largescale production (Wang et al., 2008; Haddar et al., 2010). Microbial proteases are deemed vital elements in a wide range of processes including nutritional, pharmaceutical, environmental. detergent, textile, leather, and livestock industries (Homaei et al., 2010; Homaei and Etemadipour, 2015; Barzkar et al., 2018). However, the primary limitation to the application of microbial proteases is their instability under high temperature and pH conditions (Iqbalsyah, et al., 2019). Hence, thermostable and/or thermophilic proteases which possess high abilities to preserve their activities under harsh conditions of industrial processes are more applicable in the field of biotechnology (Wakarchuk et al., 1994). Thermostable and thermophilic enzymes are

normally derived from thermophilic and mesophilic organisms. Most of the thermostable and/or thermophilic proteases are not only stable at high temperatures but also preserve their catalytic activities in the presence of detergents and other

^{*}Corresponding author's e-mail address:

p.farrokh@du.ac.ir

denaturing chemicals, such as urea, guanidine-HCl, Dithiothreitol, 2-mercaptoethanol, and chaotropic agents. The application of thermostable and/or thermophilic proteases in the industrial processes have some advantages, including higher reaction rates, enhanced substrate solubility, and decreased solution viscosities. In addition, their large scale production is less susceptible to contamination since there are fewer microorganisms which can grow at temperatures. However, screening of high thermophilic microorganisms for finding thermophilic proteases is a tedious, costly, and timeconsuming strategy. In this regard, engineering mesostable enzymes to develop thermostable enzymes is considered as a valuable strategy (Kumar, 2002; Li and Li, 2009: Tavano et al., 2018).

To determine factors which are responsible for thermal stability of proteins several approaches can be applied. Among which, we mention i) bioinformatic comparison of the protein structure for thermophilic proteins versus their mesophilic homologues, ii) computational studies on a dataset of thermophilic and mesophilic proteins to compare their various features, iii) mutational-based studies, and iv) comparing whole genome sequences of thermophilic species with their mesophilic homologues (Sadeghi et al., 2006).

In point of structural view, thermostable proteins have higher numbers of ionic interactions, salt bridges, disulfide, and hydrogen bonds (Sadeghi et al., 2006). They have increased packing density (Sadeghi et al., 2006), higher contents of helical structures (Sadeghi et al., 2006), less short surface loops (Sadeghi et al., 2006), decreased surface area to volume ratios (Das and Gerstein, 2000; Tekaia et al., 2002), and decreased internal cavities (Pellegrini et al., 1999). At the level of amino acid sequences, thermophilic proteins have a higher frequency of hydrophobic (Razvi and Scholtz, 2006) and charged amino acids, higher relative content of Arg, Glu (Pack et al., 2013), lower occurrence of bulky polar residues, decreased contents of uncharged polar residues (Ser, Thr, Asn, and Gln) (Haney et al., 1999), and increased contents of aromatic residues (Chakravorty et al., 2011).

Therefore, further investigations about the thermostability encountered mechanisms are essential for theoretical description of protein folding and stability and also, for designing efficient thermostable industrial enzymes. Since thermostable microbial proteases have a key contributory role in the market of industrial enzyme, and whereas there are no shared particular sequences or structural patterns among heat-stable proteases, focusing on this group of enzymes is worthwhile. Here, we selected 43 thermostable/thermophilic and mesophilic proteases which their characteristics had been previously determined in experimental studies. This study, innovatively investigated the consistency of well-known thermostability parameters among thermostable proteolytic enzymes.

Materials and Methods

Sequence collection of microbial proteases

Thirty-three bacterial thermostable proteolytic enzymes, which their optimum temperature and/or thermal stability had been reported in experimental studies were selected from UniProt proteomic server (Consortium 2018). Moreover, ten well-identified mesostable proteolytic enzymes' sequences were also collected from UniProt to compare with thermostable ones. In this regard, amino acid sequences of these enzymes were retrieved in FASTA format.

Investigation the thermostability properties of different proteases

The amino acid composition, aliphatic index, and isoelectric point of each proteolytic enzyme were determined through the ProtParam tool (web.expasy.org/protparam/). Melting temperatures (Tm) and net charges of the enzymes at pH 7 were calculated using Tm Predictor (tm.life.nthu.edu.tw/) and PepCalc (pepcalc.com), respectively. Frequency of AXXXA and GXXXG motifs in the sequences were assigned through manual searching and counting.

Determination of the types of proteolytic enzymes and their active sites

The types of the proteases were determined based on their conserved domain composition using CDsearch tool (Marchler-Bauer et al., 2016). The active sites of proteolytic enzymes with protease activity were identified through the literature review (Yamagata and Ichishima, 1995; Wu et al., 2004; Pombejra et al., 2018). To determine the active sites of enzymes with peptidase activity, the MEROPS database (Rawlings et al., 2017) in addition to literature review (Medrano et al., 1998; Goldstein et al., 2005; Bjelke et al., 2006; Ohara-Nemoto et al., 2014; Reddi et al., 2014) were applied.

Multiple sequence alignments

In order to determine the possible differences of conserved motifs and residues in the sequences of mesostable and thermostable proteases, multiple sequence alignments were performed in IBIVU server using PRALINE software (Simossis and Heringa, 2005). Since the investigated amino acid sequences have significantly different lengths (285-1364 amino acid residues), matrix PAM 250 with gap opening 10 and gap extension 1 were used for alignments.

Structural analyses

Among 43 selected proteolytic enzymes, nine enzymes had a tertiary structure in the Protein Data Bank (PDB) (Bank, 2000) which four and five of them are mesostable and thermostable/thermophilic proteolytic enzymes, respectively. Structural analysis of these enzymes was performed using VADAR (Volume, Area, Dihedral Angle Reporter) software version 1.8 which can be accessed at http://redpoll. pharmacy.ualberta.ca/vadar/ (Willard et al., 2003). Furthermore, frequency of alpha helixes, polar surface regions, and packing ratios in these structures were determined. One of these structures (PDB ID: 5J44, which was related to Q8VSL2 sequence) with more than 2000 residues, was not investigable using VADAR software.

Statistical analyses

Homogeneity of variance and normal distribution of data including frequency of each twenty amino acids, AXXXA and GXXXG motifs, the mean of pI (isoelectric point), aliphatic indexes, Tm, net charges in pH 7, melting temperatures in both thermophilic/thermostable and mesostable enzymes groups were evaluated using Levene and Shapiro Wilk tests in SPSS version 23, respectively. To compare the mean of each variable in two investigated subsets (thermophilic/thermostable and mesostable proteolytic enzymes), independent t-test and Mann-Whitney test were applied for data with or without normal distribution, respectively. Finally, chi-square test was carried out to evaluate the possible differences in melting temperatures of proteolytic enzymes in these two groups.

Results

Source and properties of investigated sequences

All selected enzymes have bacterial origin except Q2QC89, which has been derived from an archaeon (*Thermococcus* sp.).

Proteolytic enzymes in the current study with an optimum temperature of 50°C or higher and/or thermal stability in the mentioned temperatures were considered as thermostable enzymes, and the others were placed in the mesostable group. Some

properties of the proteolytic enzymes which were obtained from literature are summarized in table 1.

Distinctive features of thermophilic/thermostable proteolytic enzymes

Some characteristics of the enzymes which are related to the thermostability were summarized in table 2. The Tm Predictor categorizes proteins based on their melting temperatures in three ranges; >65°C, <55°C and 55-65°C. Statistical analysis showed that there were no significant differences in melting temperatures of thermophilic/thermostable and mesophilic proteolytic enzymes (P>0.05).

In addition, statistical analysis confirmed normal distributions of data related to frequency of AXXXA motifs, and amino acids except Ala, Arg, Cys, Gln, His, Leu, Phe (P>0.05), while isoelectric points, net charges, aliphatic indexes, and GXXXG motifs did not show normal distributions (P<0.05). In case of pI, aliphatic index and net charge parameters, thermostable and mesostable enzymes were similar; however, the frequency of AXXXA motif was significantly higher in thermophilic/thermostable proteolytic enzymes when compared to mesostable ones (P<0.05).

The percentages of amino acids present in proteolytic enzymes are presented in Figure 1. According to the *t*-test and Mann Whitney results, there was a significant difference in frequencies of Met, Ala, Leu, Lys and His between thermostable proteolytic enzymes and mesostable ones. Although, thermophilic/thermostable enzymes had higher percentages of Ala (9.2% vs. 8.59% in the other group) and lower percentages of Met (2.01%), Leu (7.16%), Lys (5.06%) and His (2.32%) in comparison to mesostable proteins. The frequency of the above-mentioned residues in the mesostable enzymes were as follows: Met (2.68%), Leu (8.22%), Lys (5.84%), and His (2.61%) (Figure 1). Moreover, to compare each of the twenty amino acids, the analysis of the hydrophobic, aromatic, polar charged, and polar uncharged amino acid groups was performed; but, the subsets of the residues did not show any significant differences between thermostable and mesostable enzymes.

Types of proteolytic enzymes and their active sites

Whereas the types of some proteolytic enzymes were not precisely determined in the previous studies, the retrieved sequences were classified according to their conserved domains. It was confirmed that 25 and 18 of investigated enzymes could be grouped as proteases and peptidases, respectively (Table 2). Two types of catalytic triads within conserved sequences were observed among the proteases, which are including Asp, His, and Ser or His, His, and Glu. However, peptidases due to their variability had different active sites, and one of them (UniProt ID: G5DCB7) belongs to the peptidase family with unknown catalytic mechanism based on the MEROPS database (Table 2).

UniProt ID	Source of microorganisms	Optimum temperatur	Therma l	Optimu m pH	pH stabilit	References
		e	stability		y range	
	Ther	mostable/ther	mophilic er	nzymes	1	
P06874	Bacillus stearothermophilu s	ND	65°C	7	ND	(Fujii et al. 1983)
P43133	Bacillus stearothermophilu s	ND	65°C	ND	6.5-7.5	(Kubo and Imanaka 1988)
P23341	Thermus aquaticus YT-1	75-80°C	ND	ND	ND	(Motoshima et al. 1990)
P39899	Bacillus subtilis	ND	65°C	6.6	ND	(Tran et al. 1991)
P23384	Bacillus caldolyticus	77°C	ND	7	ND	(Van den Burg et al. 1991)
P42663	Thermus aquaticus YT-l	80°C	ND	8	ND	(SH. Lee et al. 1992)
P41363	Bacillus sp. no. AH-101	ND	30-70°С	ND	12-13	(Takami et al. 1992)
P0CH29	Bacillus megaterium ATCC 1458 1	58°C	ND	6.4-7.2	ND	(KÜHN and FORTNAGE L 1993)
Q45670	Bacillus sp. strain AK.1	75°C	ND	8.5	ND	(Maciver et al. 1994)
Q45621	Bacillus sp. NKS- 21	50°C	ND	ND	6-11	(Yamagata and Ichishima 1995)
P80146	<i>Thermus</i> sp. strain Rt41A	ND	70°C	8	ND	(Munro et al. 1995)
P04189	Bacillus subtilis	ND	50°C	8	ND	(Kamal et al. 1995)
Q43880	Bacillus sp.	82°C	ND	ND	ND	(Vecerek and Kyslik 1995)
Q99405	Bacillus sp. KSM- K16	55°C	ND	10	ND	(Kobayashi et al. 1995)
Q56365	Thermoactinomyc es sp. E79	85°C	ND	11	5-12	(JK. Lee et al. 1996)
Q59223	Bacillus sp. strain EAI	ND	85-95°C	6.5	6-7.5	(Saul et al. 1996)
P74937	<i>Thermoactinomyc</i> es sp. HS682	65°C	ND	11	6-12	(Tsuchiya et al. 1997)
O33599	Staphylococcus aureus	ND	100°C	ND	5-8	(Ramadurai et al. 1999)

Q93JY4	Prevotella albensis M384	ND	60°C	ND	7-8	(Walker et al. 2003)
Q6W4N2	Bacillus sp. WF146	58°C	ND	8	ND	(Wu et al. 2004)
Q84FM9	Fervidobacterium islandicum	80°C	ND	8	ND	(Gödde et al. 2005)
Q2QC89	Thermococcus sp.NA1	ND	70-80°C	6.5	ND	(H. S. Lee et al. 2006)
Q8G6Z9	Bifidobacterium longum	50°C	40-60°C	8	4-8	(Seo et al. 2007)
E0XH65	Bacillus sp. B001	60°C	20-90°C	10	5-12	(Deng et al. 2010)
G8HV17	Bacillus circulans MTCC 7906	60°C	ND	9	ND	(Kaur et al. 2012)
G5DCB7	Geobacillus thermoleovorans DSM 15325	50°C	ND	7.4	ND	(Jasilionis et al. 2012)
J9XWB6	Serratia sp. ZF03	ND	50-55°C	8	8-10	(Salarizadeh et al. 2014)
H2BKX5	Myroides profundi D25	60°C	ND	8.5	ND	(Ran et al. 2014)
W5RWH8	Geobacillus thermoleovorans DSM 15325	40°C	50-60°C	7.3	5-8	(Jasilionis and Kuisiene 2015)
A0A0C4XY8 3	Streptomyces sp.M30	75°C	ND	9	6-11	(Xin et al. 2015)
H6WCS0	Dichelobacter nodosus	35°C	15–65°C	7	4-10	(Wani et al. 2016)
Q3HTI0	Bacillus cereus PMW8	60°C	40-70°C	9	ND	(Esakkiraj et al. 2016)
Q45300	Bacillus licheniformis	60°C	ND	10	ND	(Ramakrishna n et al. 2017)
		Mesostabl	e enzymes		•	· · · · · ·
P46544	Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397	37°C	ND	ND	ND	(Atlan et al. 1994)
P94870	Lactobacillus helveticus CNRZ32	ND	32-37°C	4.5	ND	(Fenster et al. 1997)
O07121	Lactococcus lactis MG1363	37°C	ND	ND	ND	(Hellendoorn et al. 1997)
Q8VSL2	Shigella flexneri	37°C	ND	7.5	ND	(Benjelloun- Touimi et al. 1998)
Q7MUW6	Porphyromonas gingivalis	ND	25-37°C	ND	6-8	(Banbula et al. 1999)
Q9L4G1	Lactobacillus helveticus	ND	25-37°C	7.5	6-8	(Savijoki and Palva 2000)
082882	Escherichia coli O157:H7	37-42°C	ND	6.5-7	ND	(Grys et al. 2006)
Q29ZA8	Bacillus intermedius	37°C	ND	8	ND	(Sharipova et al. 2008)

P9WK19	Mycobacterium tuberculosis H37Rv	37°C	ND	7.5	ND	(Zhang et al. 2009)
B2RIT0	Porphyromonas gingivalis	37°C	ND	6	ND	(Ohara- Nemoto et al. 2014)

ND: Not Determined

UniProt ID	Types of proteases	Active sites	pI	Aliphati c Index	Tm	Net charg e in pH	Numbe r of AXXX A motifs	Number of GXXX G motifs
P06874	Zn-dependent metalloprotease	H374, H378, E398	5.6 8	76.72	<5 5	-8.9	8	2
P43133	Zn-dependent metalloprotease	H377, H381, E401	5.8 2	76.46	55- 65	-6.9	6	3
P23341	Aminopeptidase T	Y352	5.3 1	89.49	>6 5	-13.9	7	2
P39899	Zn-dependent metalloprotease	H369, H373, E393	5.4 3	73.10	55- 65	-17.3	6	4
P23384	Zn-dependent metalloprotease	H370, H374, E394	5.6 4	75.33	<5 5	-8.2	8	4
P42663	Carboxypeptidas e	E277	5.5 3	83.76	55- 65	-13.6	6	6
P41363	Serine protease	D124, H154, S307	6.5 6	90.80	>6 5	-1	4	1
P0CH29	Zn-dependent metalloprotease	H388, H392, E412	8.3 9	70.64	55- 65	4	6	5
Q45670	Thermitase-like proteins	D160, H193, S347	4.6 8	82.97	>6 5	-17.5	7	1
Q45621	Serine protease	D49, H86, S250	4.8 3	90.50	55- 65	-17.5	3	1
P80146	Proteinase K-like proteins	D171, H204, S356	6.1 6	90.98	>6 5	-2.6	5	2
P04189	Serine protease	D138, H170, S327	9.0 4	81.23	>6 5	5.8	5	3

 Table 2. In silico characterization of investigated proteolytic enzymes.

Q43880	Zn-dependent	H372,	5.4	73.97	<5	-10.1	7	3
	metalloprotease	H376,	7		5			
000405	Somina mustanga	E396	16	01.19	>6	10.2	5	1
Q99403	Serine protease	H173	4.0	91.10	5	-19.2	5	1
		S326	,					
Q56365	Serine protease	D143,	6.0	78.57	>6	-3.3	8	1
	_	H176,	4		5			
		S330						
Q59223	Thermitase-like	H372,	5.3	74.51	55-	-11.1	7	3
	proteins	H3/6, E206	9		65			
D7/037	7n denendent	E390	10	87.13	>6	15.6	3	0
1/4/5/	metalloprotease	H86	2	07.15	5	-15.0	5	0
	metanoproteuse	S249	2		5			
O33599	Metallopeptidase	H291	6.1	38.10	55-	-4.6	2	2
			6		65			
Q93JY4	Dipeptidyl	Y511,	7.5	70.77	55-	2.1	5	2
	peptidase IV	S600,	6		65			
		D674, H706						
O6W4N2	Serine protease	D149	52	81 41	>6	-8.5	7	3
2011112	Serine proteuse	H185.	8	01.11	5	0.5	,	5
		S363						
Q84FM9	Serine protease	D210,	5.4	93.84	>6	-9.6	3	4
		H248,	5		5			
		S424		04.05		11.5		
Q2QC89	Zn-dependent	E297	5.6	84.97	>6	-11.7	2	2
086679	Dipentidase	C3	1	71.07	55-	_17	2	0
Q0002)	Dipeptidase	05	6	/1.0/	65		2	0
E0XH65	Serine protease	D138,	4.0	84.08	>6	-40.5	3	1
	-	H168,			5			
		S321						
G8HV17	Serine protease	D155,	5.1	79.41	55-	-14.7	3	2
		H187,	4		65			
G5DCB7	Collagenase-like	Joseph Junknow	53	88.06	>6	_13.4	4	1
GJDCD7	protease	n	9	00.00	5	-13.4	т	1
J9XWB6	Serralysin	E175	4.6	64.18	>6	-23.8	3	4
	5		3		5			
H2BKX5	Kp43 proteases	D129,	5.8	79.68	55-	-8	7	2
		H177,	5		65			
		S378		07.00		0.0	0	
W2KWH8	Uligo peptidase	E401	8.9	87.28	>6	9.2	9	5
A0A0C4XY8	Proteinase K-like	D156	4.2	80.33	>6	-21.4	7	3
3	proteins	H187.	5	00.00	5	21.1	,	
_	1	S339						
H6WCS0	Serine protease	D156,	6.2	78.92	55-	-4	5	3
		H220,	5		65			
		S392						

Q3HTI0	Zn-dependent	H143,	5.1	65.65	55-	-8.3	6	2
	metalloprotease	H147,	8		65			
	-	E167						
Q45300	Serine protease	D137,	8.9	84.70	>6	4.8	4	2
-	-	H168,	4		5			
		S325						
P46544	Proline	S107,	5.0	87.69	>6	-12.4	3	2
	iminopeptidase	D246,	9		5			
		D273						
P94870	Aminopeptidases	Q64,	5.2	75.46	>6	-13.2	1	2
		С70,	1		5			
		Н362,						
		N383						
O07121	Dipeptidase	H92	4.7	79.87	>6	-33.7	4	3
			3		5			
Q8VSL2	Serine peptidase	H134,	6.1	74.02	>6	-8.9	7	14
		D162,	0		5			
		S267						
Q7MUW6	Dipeptidyl	Y518,	6.1	74.44	55-	-8.2	4	6
	peptidase IV	S603,	6		65			
		D678,						
		H710						
Q9L4G1	Tripeptidase	D84,	4.7	73.90	>6	-29.8	1	2
		E178	7		5			
O82882	Metallopeptidase	E447	6.3	74.59	55-	-5.8	5	8
	S		9		65			
Q29ZA8	Serine protease	D138,	8.9	80.73	>6	4.8	5	1
		H170,	6		5			
		S327						
P9WK19	Methionine	C105	5/0	87.89	55-	-11.5	3	2
	aminopeptidase		7		65			
B2RIT0	Dipeptidyl	S542,	5.7	68.52	55-	-10.7	4	4
	aminopeptidase	D627,	5		65			
		H659						
e s	Significant value		NS	NS	NS	NS	**	NS

NS, * and ** represent no significant differences, significant differences at 90% and 95% confidence intervals, respectively.

Figure 1. Frequency of different amino acids is reported for thermostable (black columns) and mesostable (white columns) groups. *, ** and *** represent significant differences at 90%, 95%, and 99% confidence intervals, respectively.

Sequence alignments

Results obtained through multiple sequence alignments indicated somewhat conserved sequences (from amino acid residues 1000 to1300) which are shown in supplementary file 1.

The structural features of thermostable/ proteolytic and mesostable enzymes

The numbers of alpha helixes, polar surface regions, and total volumes of available structures were predicted (Table 3). The statistical analyses showed that among structural characteristics, just total volumes of thermophilic/thermostable proteolytic enzymes were significantly lower than that of mesostable ones (P<0.05).

Discussion

In recent years, considerable efforts have been made to understand influential factors involved in thermal stability of thermostable or thermophilic proteins derived from mesophilic, thermophilic or

 Table 3. Structural analyses of thermophilic/thermostable proteolytic enzymes and mesostable ones using VADAR software.

UniProt ID/ PDB ID	Type of enzymes	Alpha helix (%)	Polar surface Exposed)regions (polar ASA ¹ (A ^o) 10 ⁻²	Total volume (Packing) 10 ⁻³ (A°)
P43133/5WR3	Thermophile/Thermostable	37	4374.7	40568.7
Q45670/1DBI		28	3188.9	33870.1
P04189/1SCJ		96	3713.3	42181.7
Q99405/1MPT		78	3197.2	31663.4
O33599/1QWY		23	3810.9	29772.0
Q7MUW6/2D5L	Mesostable	96	6132.5	92421.4
O82882/3UJZ		56	6581.3	82474.0
P9WK19/1Y1N		71	2086.1	36599.7
S	gnificant value	NS	NS	**

NS, and ** represent no significant difference and significant difference at 95% confidence interval, respectively. ¹ Accessible surface area.

hyper-thermophilic organisms. Thermophilic proteins preserve their native structures and consequently their activities under harsh environmental conditions, while, their mesostable already denature. homologs Comprehensive knowledge about factors involved in thermostability can be applied as a promising approach in developing thermostable enzymes through protein engineering. Most of the studies which have been worked on the thermal stability of proteins did not generally focus on a family or a limited group of proteins (Kumar et al., 2000; Liang et al., 2005; Sadeghi et al., 2006; Gromiha and Suresh, 2008). It seems that it is a reason for inconsistent results.

One of the fundamental features which profoundly affected structural, functional and biological properties of proteins is their amino acid composition. Analysis of amino acid composition and frequency can provide beneficial data about the importance of each amino acid in thermal stability of proteins. This feature can be different from one protein to another one in each organism or it can be taxon-specific (Zhou et al., 2008).

The current study showed that thermophilic or thermostable enzymes possess a higher frequency of Ala compared to mesostable ones. This residue is an appropriate helix former (Chakravorty et al., 2011) and through hydrophobic interactions provides conformational stability in the inner parts of proteins (Creighton, 1993). This feature leads to better packing, higher rigidity, hydrophobicity, and consequently more thermostability of proteins (Chakravarty and Varadarajan, 2000). This finding is analogous with previously published studies (Argos et al., 1979; Chakravarty and Varadarajan, 2000; Pack and Yoo, 2004). The percentage of Leu, another nonpolar residue, was lower in thermostable proteases than the mesostable ones. In case of Leu reported frequencies are not similar in various studies. Taylor and Vaisman detected higher percentages of Leu in thermophilic proteins (Taylor and Vaisman, 2010); while, Chakravarty and Varadaragan observed an opposite trend (Chakravarty and Varadarajan, 2000).

The present study indicated that thermophilic or thermostable proteases possess lower frequencies of thermolabile Met residue. This finding is in consistent with a previous finding (Kumar et al., 2000; Xu et al., 2003). The frequency of the other thermolabile amino acids, including Asn, Gln, and free Cys, in spite of their deamination or oxidation at high temperatures (Tomazic and Klibanov, 1988; Russell et al., 1994; Catanzano et al., 1997; Kumar et al., 2000; Xu et al., 2003), did not show indictable differences among the sequences. In the research of Kumar et al., among these temperature sensitive residues, only Cys was significantly lower in thermophilic proteins (Kumar et al., 2000).

Polar charged amino acids, including Arg, Lys, His, Asp, and Glu, contribute to the electrostatic interactions and enhancement of thermostability (Dill, 1990; Creighton, 1993; Ladbury et al., 1995; Vogt et al., 1997; Kumar et al., 2000). Although, in the current study, no significant differences were observed in the frequencies of Arg, Asp, and Glu between thermostable and mesostable proteases. Furthermore, lesser contents of Lys and His observed in thermostable proteins compared to mesostable ones. There are inconsistent reports about Lys frequency. Taylor and Vaisman found the lower percentages of Lys in thermophilic proteins (Taylor and Vaisman, 2010), while Cambillau and Claverie reported a higher percentages of Lys in hyperthermophiles (Cambillau and Claverie, 2000). Lower frequency of His in thermophilic proteins also reported in previous studies (Chakravarty and Varadarajan, 2000; Pack and Yoo, 2004; Sadeghi et al., 2006).

The aliphatic index, which is calculated based on the presence of amino acids with aliphatic side chains (Zhou et al., 2008), and melting temperature (Kumar et al., 2000) are two parameters which have positive effects on protein thermostability. However, in the present comparison, no significant differences were found between mesostable and thermostable groups for these criteria. Panja et al. showed that thermophilic proteins had a negative net charge at neutral pH and a slight acidic pI (Panja et al., 2015); while, thermostable and thermophilic proteolytic enzymes did not show any differences at the significant level of 0.05 in their study. Therefore, it seems that these factors are not determining agents for thermostability of proteases.

The AXXXA motif through helical interactions creates more stability in protein structures (Kleiger et al., 2002; Chakravorty et al., 2011). Higher frequency of AXXXA motif and poly Ala residues were also revealed through sequence analysis of the thermostable Bacillus lipases (Chakravorty et al., 2011). However, thermostable sequences in this study in spite of having significant higher Ala residues and AXXXA motifs did not have a higher percentages of alpha helixes in comparison with mesostable ones. If more PDB structures were available for the studied proteases. these contradictory findings might not occur. Since, limited structures of selected proteases and peptidases were available, the comprehensive

structural analyses were not possible. The exposed polar surfaces have been proposed as an effective factor for thermo stabilization of lipases (Chakravorty et al., 2011); however, our results were opposite to this expectation. Only packing volumes of the structures were significantly higher in thermostable enzymes than mesostable ones.

Investigating the thermostable and mesostable sequences through multiple sequence alignments is beneficial for finding short consensus sequences to design degenerate primers (Morya et al., 2012). Furthermore, these alignments will provide better insights for substitution of amino acids in protein engineering studies. Here, no considerable distinction was observed among the active sites or consensus motifs of thermostable and meostable enzymes.

Conclusion

In conclusion, according to the present study, thermostability of proteolytic enzymes not only can be attributed to the higher percentages of Ala, and fewer frequencies of His, Lys and Met, but also can be due to the presence of higher contents of AXXXA motifs and more packing structures in comparison to mesostable proteases. Without a doubt, the results of comparative studies between thermophilic proteins and their mesostable counterparts will revealed some thermo stabilizing factors. However, these results could not be accepted as general modes governing protein thermostability, because they completely depend on studied protein families. In addition, it is so difficult to relate any single factor as the main reason which is responsible for enhancement of thermal stability (Szilágyi and Závodszky, 2000). Therefore, extensive bioinformatic-based studies should be carried out on various thermostable and mesostable protein groups. Furthermore, the contradictory results should be taken into account to reach a reliable data and to enhance the thermal stability of mesostable proteins with desirable properties during protein designing or re-engineering processes.

Conflicts of interest

The authors declare that they have no conflict of interest.

References

Abebe B., Abrham S., Genet A., Hiwot G., Paulos K. and Melese A. (2014) Isolation, optimization and

characterization of protease producing bacteria from soil and water in Gondar town, North West Ethiopia. International Journal of Bacteriology, Virology and Immunology 1:20-24.

Argos P., Rossmann M. G., Grau U. M., Zuber H., Frank G. and Tratschin J. D. (1979) Thermal stability and protein structure. Biochemistry 18:25, 5698-5703.

Atlan D., Gilbert C., Blanc B. and Portalier R. (1994) Cloning, sequencing and characterization of the pepIP gene encoding a proline iminopeptidase from *Lactobacillus delbrueckii* subsp. *bulgaricus* CNRZ 397. Microbiology 140:3, 527-535.

Banbula A., Mak P., Bugno M., Silberring J., Dubin A., Nelson D., et al. (1999) Prolyl tripeptidyl peptidase from *Porphyromonas gingivalis*. A novel enzyme with possible pathological implications for the development of periodontitis. The Journal of Biological Chemistry 274:14, 9246-9252.

Berman H. M., Westbrook j., Feng Z., Gilliland G., Bhat T. N., Weissig H., et al. (2000) The protein data bank. Nucleic Acids Research 28:235-242.

Barzkar N., Homaei A., Hemmati R. and Patel S. (2018) Thermostable marine microbial proteases for industrial applications: scopes and risks. Extremophiles 22:3, 335-346.

Benjelloun-Touimi Z., Tahar M. S., Montecucco C., Sansonetti P. J. and Parsot C. (1998) SepA, the 110 kDa protein secreted by *Shigella flexneri*: twodomain structure and proteolytic activity. Microbiology 144:7, 1815-1822.

Bjelke J. R., Christensen J., Nielsen P. F., Branner S., Kanstrup A. B., Wagtmann N., et al. (2006) Dipeptidyl peptidases 8 and 9: specificity and molecular characterization compared with dipeptidyl peptidase IV. Biochemical Journal 396:2, 391-399.

Cambillau C. and Claverie J. M. (2000) Structural and genomic correlates of hyperthermostability. Journal of Biological Chemistry 275:42, 32383-32386.

Catanzano F., Barone G., Graziano G. and Capasso S. (1997) Thermodynamic analysis of the effect of

selective monodeamidation at asparagine 67 in ribonuclease A. Protein Science 6:8, 1682-1693.

Chakravarty S. and Varadarajan R. (2000) Elucidation of determinants of protein stability through genome sequence analysis. FEBS Letters 470:1, 65-69.

Chakravorty D., Parameswaran S., Dubey V. K. and Patra S. (2011) In silico characterization of thermostable lipases. Extremophiles 15:1, 89-103.

Consortium U. (2018) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research 47:D1, D506-D515.

Creighton T. E. (1993) Proteins: structures and molecular properties. Second ed. W. H. Freeman and Co. New York, 80-100 pp.

Dadshahi Z., Homaei A., Zeinali F., Sajedi R. H. and Khajeh K. (2016) Extraction and purification of a highly thermostable alkaline caseinolytic protease from wastes *Penaeus vannamei* suitable for food and detergent industries. Food Chemistry 202: 110-115.

Das R. and Gerstein M. (2000) The stability of thermophilic proteins: a study based on comprehensive genome comparison. Functional and Integrative Genomics 1:1, 76-88.

Deng A., Wu J., Zhang Y., Zhang G. and Wen T. (2010) Purification and characterization of a surfactant-stable high-alkaline protease from *Bacillus* sp. B001. Bioresource Technology 101:18, 7100-7106.

Dill K. A. (1990) Dominant forces in protein folding. Biochemistry 29:31, 7133-7155.

Esakkiraj P., Meleppat B., Lakra A. K., Ayyanna R. and Arul V. (2016) Cloning, expression, characterization and application of protease produced by *Bacillus cereus* PMW8. RSC Advances 6:45, 38611-38616.

Fenster K. M., Parkin K. L. and Steele J. L. (1997) Characterization of a thiol-dependent endopeptidase from *Lactobacillus helveticus* CNRZ32. Journal of Bacteriology 179:8, 2529-2533.

Fujii M., Takagi M., Imanaka T. and Aiba S. (1983) Molecular cloning of a thermostable neutral protease gene from *Bacillus stearothermophilus* in a vector plasmid and its expression in *Bacillus stearothermophilus* and *Bacillus subtilis*. Journal of Bacteriology 154:2, 831-837.

Gödde C., Sahm K., Brouns S. J., Kluskens L. D., van der Oost J., de Vos W. M., et al. (2005) Cloning and expression of islandisin, a new thermostable subtilisin from *Fervidobacterium islandicum*, in *Escherichia coli*. Applied and Environmental Microbiology 71:7, 3951-3958.

Goldstein J., Kordula T., Moon J., Mayo J. and Travis J. (2005) Characterization of an extracellular dipeptidase from *Streptococcus gordonii* FSS2. Infection and Immunity 73:2, 1256-1259.

Gromiha M. M. and Suresh M. X. (2008) Discrimination of mesophilic and thermophilic proteins using machine learning algorithms. Proteins 70:4, 1274-1279.

Grys T. E., Walters L. L. and Welch R. A. (2006) Characterization of the StcE protease activity of *Escherichia coli* O157: H7. Journal of Bacteriology 188:13, 4646-4653.

Haddar A., Fakhfakh-Zouari N., Hmidet N., Frikha F., Nasri M. and Kamoun A. S. (2010) Low-cost fermentation medium for alkaline protease production by *Bacillus mojavensis* A21 using hulled grain of wheat and sardinella peptone. Journal of Bioscience and Bioengineering 110:3, 288-294.

Haney P. J., Badger J. H., Buldak G. L., Reich C. I., Woese C. R. and Olsen G. J. (1999) Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic *Methanococcus* species. Proceedings of the National Academy of Sciences 96:7, 3578-3583.

Hellendoorn M. A., Franke-Fayard B. M., Mierau I., Venema G. and Kok J. (1997) Cloning and analysis of the pepV dipeptidase gene of *Lactococcus lactis* MG1363. Journal of Bacteriology 179:11, 3410-3415.

Homaei A. and Etemadipour R. (2015) Improving the activity and stability of actinidin by immobilization on gold nanorods. International Journal of Biological Macromolecules 72:1176-1181.

http://jcmr.um.ac.ir

Homaei A. A., Sajedi R. H., Sariri R., Seyfzadeh S. and Stevanato R. (2010) Cysteine enhances activity and stability of immobilized papain. Amino Acids 38:3, 937-942.

Iqbalsyah T. M., Malahayati, Atikah, and Febriani. (2019) Purification and partial characterization of a thermo-halostable protease produced by *Geobacillus* sp. strain PLS A isolated from undersea fumaroles. Journal of Taibah University for Science 13:1, 850-857.

Jasilionis A., Kaupinis A., Ger M., Valius M., Chitavichius D. and Kuisiene N. (2012) Gene expression and activity analysis of the first thermophilic U32 peptidase. Central European Journal of Biology 7:4, 587-595.

Jasilionis A. and Kuisiene N. (2015) Characterization of a novel thermostable oligopeptidase from *Geobacillus thermoleovorans* DSM 15325. Journal of Microbiology and Biotechnology 25:7, 1070-1083.

Kamal M., Höög J. O., Kaiser R., Shafqat J., Razzaki T., Zaidi Z. H., et al. (1995) Isolation, characterization and structure of subtilisin from a thermostable *Bacillus subtilis* isolate. FEBS Letters 374:3, 363-366.

Kaur I., Kocher G. S. and Gupta V. (2012) Molecular cloning and nucleotide sequence of the gene for an alkaline protease from *Bacillus circulans* MTCC 7906. Indian Journal of Microbiology 52:4, 630-637.

Kleiger G., Grothe R., Mallick P. and Eisenberg D. (2002) GXXXG and AXXXA: common α -helical interaction motifs in proteins, particularly in extremophiles. Biochemistry 41:19, 5990-5997.

Kobayashi T., Hakamada Y., Adachi S., Hitomi J., Yoshimatsu T., Koike K., et al. (1995) Purification and properties of an alkaline protease from alkalophilic *Bacillus* sp. KSM-K16. Applied Microbiology and Biotechnology 43:3, 473-481.

Kubo M. and Imanaka T. (1988) Cloning and nucleotide sequence of the highly thermostable neutral protease gene from *Bacillus stearothermophilus*. Microbiology 134:7, 1883-1892.

Kühn S. and Fortnagel P. (1993) Molecular cloning and nucleotide sequence of the gene encoding a calcium-dependent exoproteinase from *Bacillus megaterium* ATCC 14581. Microbiology 139:1, 39-47.

Kumar C. (2002) Purification and characterization of a thermostable alkaline protease from alkalophilic *Bacillus pumilus*. Letters in Applied Microbiology. 34:1, 13-17.

Kumar S., Tsai C. J. and Nussinov R. (2000) Factors enhancing protein thermostability. Protein Engineering 13:3, 179-191.

Ladbury J. E., Wynn R., Thomson J. A. and Sturtevant J. M. (1995) Substitution of charged residues into the hydrophobic core of *Escherichia coli* thioredoxin results in a change in heat capacity of the native protein. Biochemistry 34:7, 2148-2152.

Lee H. S., Kim Y. J., Bae S. S., Jeon J. H., Lim J. K., Kang S. G., et al. (2006) Overexpression and characterization of a carboxypeptidase from the hyperthermophilic archaeon *Thermococcus* sp. NA1. Bioscience, Biotechnology, and Biochemistry 70:5, 1140-1147.

Lee J. K., Kim Y. O., Kim H. K., Park Y. S. and Oh T. K. (1996) Purification and characterization of a thermostable alkaline protease from *Thermoactinomyces* sp. E79 and the DNA sequence of the encoding gene. Bioscience, Biotechnology, and Biochemistry 60:5, 840-846.

Lee S. H., Minagawa E., Taguchi H., Matsuzawa H., Ohta T., Kaminogawa S., et al. (1992) Purification and characterization of a thermostable carboxypeptidase (carboxypeptidase Taq) from *Thermus aquaticus* YT-1. Bioscience, Biotechnology, and Biochemistry 56:11, 1839-1844.

Li A. N. and Li D. C. (2009) Cloning, expression and characterization of the serine protease gene from *Chaetomium thermophilum*. Journal of Applied Microbiology 106:2, 369-380.

Liang H. K., Huang C. M., Ko M. T. and Hwang J. K. (2005) Amino acid coupling patterns in thermophilic proteins. Proteins 59:1, 58-63.

Maciver B., McHale R. H., Saul D. J. and Bergquist P. L. (1994) Cloning and sequencing of a serine

proteinase gene from a thermophilic *Bacillus* species and its expression in *Escherichia coli*. Applied and Environmental Microbiology 60:11, 3981-3988.

Marchler-Bauer A., Bo Y., Han L., He J., Lanczycki C. J., Lu S., et al. (2016) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Research 45:D1, D200-D203.

Medrano F., Alonso J., Garcia J., Romero A., Bode W. and Gomis-Ruth F. (1998) Structure of proline iminopeptidase from *Xanthomonas campestris* pv. citri: a prototype for the prolyl oligopeptidase family. The EMBO Journal 17:1, 1-9.

Morya V. K., Yadav S., Kim E. K. and Yadav D. (2012) In silico characterization of alkaline proteases from different species of *Aspergillus*. Applied Biochemistry and Biotechnology 166:1, 243-257.

Motoshima H., Azuma N., Kaminogawa S., Ono M., Minagawa E., Matsuzawa H., et al. (1990) Molecular cloning and nucleotide sequence of the aminopeptidase T gene of *Thermus aquaticus* YT-1 and its high-level expression in *Escherichia coli*. Agricultural and biological chemistry 54:9, 2385-2392.

Munro G. K., McHale R. H., Saul D. J., Reeves R. A. and Bergquist P. L. (1995) A gene encoding a thermophilic alkaline serine proteinase from *Thermus* sp. strain Rt41A and its expression in *Escherichia coli*. Microbiology 141:7, 1731-1738.

Ohara-Nemoto Y., Rouf S. M., Naito M., Yanase A., Tetsuo F., Ono T., et al. (2014) Identification and characterization of prokaryotic dipeptidyl-peptidase 5 from *Porphyromonas gingivalis*. The Journal of Biological Chemistry 289:9, 5436-5448.

Pack S. P., Kang T. J. and Yoo Y. J. (2013) Protein thermostabilizing factors: high relative occurrence of amino acids, residual properties, and secondary structure type in different residual state. Applied Biochemistry and Biotechnology 171:5, 1212-1226.

Pack S. P. and Yoo Y. J. (2004) Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins. Journal of Biotechnology 111:3, 269-277.

Panja A. S., Bandopadhyay, B. and Maiti, S. (2015) Protein thermostability is owing to their preferences to non-polar smaller volume amino acids, variations in residual physico-chemical properties and more salt-bridges. PLoS ONE 10:7, e0131495.

Patel S. (2017) A critical review on serine protease: key immune manipulator and pathology mediator. Allergologia et Immunopathologia 45:6, 579-591.

Pellegrini M., Marcotte E. M., Thompson M. J., Eisenberg D. and Yeates T. O. (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proceedings of the National Academy of Sciences 96:8, 4285-4288.

Pombejra S. N., Jamklang M., Uhrig J. P., Vu K. and Gelli A. (2018) The structure-function analysis of the Mpr1 metalloprotease determinants of activity during migration of fungal cells across the bloodbrain barrier. PLoS ONE 13:8, e0203020.

Ramadurai L., Lockwood K. J., Lockwood J., Nadakavukaren M. J. and Jayaswal R. K. (1999) Characterization of a chromosomally encoded glycylglycine endopeptidase of *Staphylococcus aureus*. Microbiology 145:4, 801-808.

Ramakrishnan V., Thambidurai Y., Rajasekharan S. K. and Mohanvel S. K. (2017) Partial characterization and cloning of protease from *Bacillus*. Asian Journal of Pharmaceutical and Clinical Research 10:10, 187-191.

Ran L. Y., Su H. N., Zhou M. Y., Wang L., Chen X. L., Xie B. B., et al. (2014) Characterization of a novel subtilisin-like protease myroicolsin from deep sea bacterium *Myroides profundi* D25 and molecular insight into its collagenolytic mechanism. The Journal of Biological Chemistry 289:9, 6041-6053.

Raveendran S., Parameswaran B., Beevi Ummalyma S., Abraham A., Kuruvilla Mathew A., Madhavan A., et al. (2018) Applications of microbial enzymes in food industry. Food Technology and Biotechnology 56:1, 16-30.

Rawlings N. D., Barrett A. J., Thomas P. D., Huang X., Bateman A. and Finn R.D. (2017) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Research 46:D1, D624-D632.

Rawlings N. D., Morton F. R., Kok C. Y., Kong J. and Barrett A. J. (2007) MEROPS: the peptidase database. Nucleic Acids Research 36:suppl_1, D320-D325.

Razvi A. and Scholtz J. M. (2006) Lessons in stability from thermophilic proteins. Protein Science 15:7, 1569-1578.

Razzaq A., Shamsi S., Ali A., Ali Q., Sajjad M., Malik A. and Ashraf M. (2019) Microbial proteases applications. Frontiers in Bioengineering and Biotechnology 7:110.

Reddi R., Arya T., Kishor C., Gumpena R., Ganji R. J., Bhukya S., et al. (2014) Selective targeting of the conserved active site cysteine of *Mycobacterium tuberculosis* methionine aminopeptidase with electrophilic reagents. The FEBS Journal 281:18, 4240-4248.

Russell R. J., Hough D. W., Danson M. J. and Taylor G. L. (1994) The crystal structure of citrate synthase from the thermophilic archaeon, *Thermoplasma acidophilum*. Structure 2:12, 1157-1167.

Sadeghi M., Naderi-Manesh H., Zarrabi M. and Ranjbar B. (2006) Effective factors in thermostability of thermophilic proteins. Biophysical Chemistry 119:3, 256-270.

Salarizadeh N., Hasannia S., Akbari Noghabi K. and Hassan Sajedi R. (2014) Purification and characterization of 50 kDa extracellular metalloprotease from *Serratia* sp. ZF03. Iranian Journal of Biotechnology12:3, 18-27.

Saul D. J., Williams L. C., Toogood H. S., Daniel R. M. and Bergquist P. L. (1996) Sequence of the gene encoding a highly thermostable neutral proteinase from *Bacillus* sp. strain EA1: expression in *Escherichia coli* and characterisation. Biochimica et Biophysica Acta 1308:1, 74-80.

Savijoki K. and Palva A. (2000) Purification and molecular characterization of a tripeptidase (PepT) from *Lactobacillus helveticus*. Applied and Environmental Microbiology 66:2, 794-800.

Seo J. M., Ji G. E., Cho S. H., Park M. S. and Lee H. J. (2007) Characterization of a *Bifidobacterium longum* BORI dipeptidase belonging to the U34

family. Applied and Environmental Microbiology 73:17, 5598-5606.

Sharipova M., Balaban N., Kayumov A., Kirillova Y., Mardanova A., Gabdrakhmanova L., et al. (2008) The expression of the serine proteinase gene of *Bacillus intermedius* in *Bacillus subtilis*. Microbiological Research 163:1, 39-50.

Simossis V. A. and Heringa J. (2005) PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information. Nucleic Acids Research 33:suppl_2, W289-W294.

Souza P. M. D., Bittencourt, M. L. D. A., Caprara, C. C., Freitas, M. D., Almeida, R. P. C. D., Silveira, D., et al. (2015) A biotechnology perspective of fungal proteases. Brazilian Journal of Microbiology 46:2, 337-346.

Szilágyi A. and Závodszky P. (2000) Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 8:5, 493-504.

Takami H., Kobayashi T., Aono R. and Horikoshi K. (1992) Molecular cloning, nucleotide sequence and expression of the structural gene for a thermostable alkaline protease from *Bacillus* sp. no. AH-101. Applied Microbiology and Biotechnology 38:1, 101-108.

Tavano O. L., Berenguer-Murcia A., Secundo F. and Fernandez-Lafuente R. (2018) Biotechnological applications of proteases in food technology. Comprehensive Reviews in Food Science and Food Safety 17:2, 412-436.

Taylor T. J. and Vaisman I. I. (2010) Discrimination of thermophilic and mesophilic proteins. BMC Structural Biology10:1, S5.

Tekaia F., Yeramian E. and Dujon B. (2002) Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene 297:1-2, 51-60.

Tomazic S. J. and Klibanov A. M. (1988) Mechanisms of irreversible thermal inactivation of *Bacillus* alpha-amylases. Journal of Biological Chemistry 263:7, 3086-3091. Tran L., Wu X. and Wong S. (1991) Cloning and expression of a novel protease gene encoding an extracellular neutral protease from *Bacillus subtilis*. Journal of Bacteriology 173:20, 6364-6372.

Tsuchiya K., Ikeda I., Tsuchiya T. and Kimura T. (1997) Cloning and expression of an intracellular alkaline protease gene from alkalophilic *Thermoactinomyces* sp. HS682. Bioscience, Biotechnology, and Biochemistry 61:2, 298-303.

Van den Burg B., Enequist H., Van der Haar M., Eijsink V., Stulp B. and Venema G. (1991) A highly thermostable neutral protease from *Bacillus caldolyticus*: cloning and expression of the gene in *Bacillus subtilis* and characterization of the gene product. Journal of Bacteriology 173:13, 4107-4115.

Vecerek B. and Kyslik P. (1995) Cloning and sequencing of the neutral protease-encoding gene from a thermophilic strain of *Bacillus* sp. Gene 158:1, 147-148.

Vogt G., Woell S. and Argos P. (1997) Protein thermal stability, hydrogen bonds, and ion pairs. Journal of Molecular Biology 269:4, 631-643.

Wakarchuk W. W., Sung W. L., Campbell R. L., Cunningham A., Watson D. C. and Yaguchi M. (1994) Thermostabilization of the *Bacillus circulans* xylanase by the introduction of disulfide bonds. Protein Engineering, Design and Selection 7:11, 1379-1386.

Walker N. D., McEwan N. R. and Wallace R. J. (2003) Cloning and functional expression of dipeptidyl peptidase IV from the ruminal bacterium *Prevotella albensis* M384T. Microbiology 149:8, 2227-2234.

Wang S. L., Wang C. Y. and Huang T. Y. (2008) Microbial reclamation of squid pen for the production of a novel extracellular serine protease by *Lactobacillus paracasei* subsp *paracasei* TKU012. Bioresource Technology 99:9, 3411-3417.

Wani A. H., Sharma M., Salwan R., Singh G., Chahota R. and Verma S. (2016) Cloning, expression, and functional characterization of serine protease Aprv2 from virulent isolate *Dichelobacter nodosus* of Indian origin. Applied Biochemistry and Biotechnology 180:3, 576-587. Willard L., Ranjan A., Zhang H., Monzavi H., Boyko R. F., Sykes B. D., et al. (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Research 31:13, 3316-3319.

Wu J., Bian Y., Tang B., Chen X., Shen P. and Peng Z. (2004) Cloning and analysis of WF146 protease, a novel thermophilic subtilisin-like protease with four inserted surface loops. FEMS Microbiology Letters 230:2, 251-258.

Xin Y., Sun Z., Chen Q., Wang J., Wang Y., Luogong L., et al. (2015) Purification and characterization of a novel extracellular thermostable alkaline protease from *Streptomyces* sp. M30. Journal of Microbiology and Biotechnology 25:11, 1944-1953.

Xu Z., Liu Y., Yang Y., Jiang W., Arnold E. and Ding J. (2003) Crystal structure of D-hydantoinase from *Burkholderia pickettii* at a resolution of 2.7 Angstroms: insights into the molecular basis of enzyme thermostability. Journal of Bacteriology 185:14, 4038-4049.

Yamagata Y. and Ichishima E. (1995) A new alkaline serine protease from alkalophilic *Bacillus* sp.: cloning, sequencing, and characterization of an intracellular protease. Current Microbiology 30:6, 357-366.

Zhang X., Chen S., Hu Z., Zhang L. and Wang H. (2009) Expression and characterization of two functional methionine aminopeptidases from *Mycobacterium tuberculosis* H37Rv. Current Microbiology 59:5, 520-525.

Zhou X. X., Wang Y. B., Pan Y. J. and Li W. F. (2008) Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids 34:1, 25-33.

Open Access Statement:

This is an open access article distributed under the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplementary Materials:

Supplementary file 1

Unconserved 0 1 2 3 4 5 6 7 8 9 10 Conserved

	10	10102	20 103	30 104	40
_P06874	PVAGASTVGV	GRGVLGDQKY	INTTYSSYYG	YYYLQDNTRG	SGIF <mark>T</mark> YDGRN
_P23384	PVAGTSTVGV	GRGVLGDQKY	INTTYSSYYG	YYYLQDNTRG	SGIF <mark>T</mark> YDGRN
_P43133	SITGT ST VGV	GRGVLGDQKN	INTTYST	YYYLQDNTRG	NGIF <mark>T</mark> YDAKY
_Q43880	PVAGTSTVGV	GRGVLGDQKY	INTTYSSYYG	YYYLQDNTRG	SGIF <mark>T</mark> YDGRN
_Q59223	PVAGT STVGV	GRGVLGDQKY	IN <mark>TT</mark> YS <mark>SYY</mark> G	YYYLQD <mark>NT</mark> RG	SGIF <mark>T</mark> YDGRN
_POCH29	PVTGTNTIGS	GKGVLGDTKS	LKTTLSSS	TYYLQDNTRG	ATIY <mark>T</mark> YDAKN
_P39899	<mark>A</mark> GT	GIGVSGDEKS	FDVTEQNG	RFYLADETRG	KGINTFDAKN
_Q3HTI0			TTLSGS	SYYLQDNTRG	ATIF <mark>T</mark> YDAKN
_Q2QC89	KVPQSHPLEK	EKYKREQMER	VNLWIL-E	KFGFPLGVRS	RLDVSAHPFT
P42663	RR-PDVGVLH	RHYPKEAQRA	FALELL-Q	ACGYDLE-AG	RLDPTAHPFE
_W5RWH8	KA-DELYANV	RRYPSGLAAA	LAADDVPK-E	VFDHLIAATR	RHLPALHRY -
_Q8G6Z9	ETNHLDLAVE	NTTPFNPRDA	FGSHSDSD-H	VYNTPRAWYM	QR FLN PYDEV
_Q84FM9	SPMI	SVCA-PGVSI	ISTMPQKDSY	GHEAKQSFVI	PENG <mark>G</mark> YYGFM
_H2BKX5	GPTNDFRIKP	DISA-KGVDV	LSAAYRNPNP	LYG	AAET <mark>S</mark> LYAYS
_H6WCS0	GVDV	DLAA-PGQDI	LSTVDSGTRR		– P <mark>V S</mark> D A Y S F M
_082882	SDGQFWK	E	<mark>RD</mark> VV	DTREARKP	EQ FG<mark>V</mark>PVTTL
_Q8VSL2	LSGSNNSVLV	DFLNKPASEM	SVTLITAPKG	SDEKTFTAGT	QQIGFSNVTP
_B2RITO	DKNKKYPAIL	YCQGGPQNT-	VSQFWSFR	WNLRLM	AEQGYIVI
_Q93JY4	DAKKKYPVIL	FQYSGPGSQQ	VMNSWSTGSM	GN GGAF <mark>DM</mark> YL	AQHGYIVV
_Q7MUW6	DPAKKYPVIV	YVYGGPHAQL	VTKTWRSS	<mark>V</mark> GGW <mark>DI</mark> YM	AQKGYAVF
_P41363	HPDLRIAG	GASFISSEP-	– – <mark>SY</mark> H – <mark>DNN</mark> G	HGTHVAGTIA	ALNNSIGV
_P04189	HPDLNVRG	GASFVPSET-	<mark>NP</mark> YQ <mark>DGS</mark> S	HGTHVAGTIA	ALNNSIGV
_Q29ZA8	HPDLNVAG	GASFVPSEP-	<mark>NA</mark> TQ <mark>DFQ</mark> S	HGTHVAGTIA	ALDNTIGV
Q45300	HPDLNVVG	GASFVAGEA-	– – <mark>YN</mark> T – <mark>DGN</mark> G	HGTHVAGTVA	ALDNTTGV
_Q99405	HPDLNIRG	GASFVPGEP-	<mark>STQ-DGN</mark> G	HGTHVAGTIA	ALNNSIGV
_E0XH65	HSDLNVQG	GVSFVPGES-	<mark>GAD-DGN</mark> G	HGTHVAGTIA	ALDNDEGV
_Q45670	HPDLDGKVIK	GYDFVDNDY-	<mark>DPM-DLN</mark> N	HGTHVAGIAA	AE-TNNATGI
_Q56365	HPDLQGKIVQ	GYDFVDNDS-	– – <mark>N P Q – D G N</mark> G	HGTHCAGIAA	AV-TNNGTGI
_G8HV17	HPDLEGRIIG	FADMVNQKT-	<mark>EPY-DDN</mark> G	HGTHCAGDVA	S S G A S S S G Q Y
_P80146	HQEFTGRIGK	GYDAITPG	<mark>GSAQDCN</mark> G	HGTHVAGTIG	GTT
_A0A0C4XY83	HQDFGGRASF	GYDYWG	<mark>GTANDGN</mark> G	HGTHVASTAA	GTA
_Q6W4N2	HPDLSANVEQ	CYNFTTSSPV	V-NGCADGNG	HGTHVAGTIL	AN- <mark>G</mark> GGSGI
_Q45621	HIEFKDQIID	GRNFTTDDNS	DPDNVEDSNG	HGTHVCGPVA	AC <mark>E</mark> NDKGV
_P74937	HYELRDRIIG	KHNVTSDDGN	DPEIVSDQNG	HGTHVCGTIA	ATEND-RA
_J9XWB6	SHPGDYNAGE	GNPTYRDVTY	AEDTRQFSLM	SYWSETNTGG	DNGGH YAAAP
_007121	GEKGNITEYL	HFSGKNAGQV	VLHSFKAGLA	ENMVPESATA	VISGAKDLEA
_Q9L4G1	PEVKHGKIRL	AFTP	- DEEIGTG	AEQFDVK	DF GAD FAFTV
_P23341	PEEEAVQRLW	QAIFQATRVD	QEDPVAAWEA	HNRVLHAKVA	FLNEK-RFHA
_P94870	NDTTGFATAL	GDKLKKDALV	LR-KLKQEGK	DDEIKKTREK	FLSEVYQMTA
_G5DCB7	VGAEEIRQIK	EKVDIEIEAF	IHGAMCSAYS	GRCVLSNHMT	ARDSNRGGCC
_P9WK19	M	PSRTALSPGV	L-SPTRPVPN	WIARPEYVGK	PAAQEGSEPW
_P46544		MMQITE-K	Y-LPFGNWQT	YCRIVGEATD	RAPLLLLHGG
_033599	MKKLTA	AAIATMGFAT	FTMAHQADAA	ETTNTQQAHT	QMSTQSQDVS
Consistency	5554523644	5455456542	3266446435	4345556656	6523645556

	1	060	70	30	90
_P06874	RTVLPGSL	WTDG	DNQFTAS	YD	AAAVDAHYYA
_P23384	RTVLPGSL	WADG	DNQFFAS	YD	AAAVDAHYYA
_P43133	R <mark>TTLPGSL</mark>	WADA	DNQFFAS	¥D	APAVDAHYY <mark>A</mark>
_Q43880	RTVLPGSL	WADG	DNQFFAS	YD	AAAVDAHYYA
_Q59223	RTVLPGSL	WADV	DNQFFAS	YD	AAAVDAHYYA
_POCH29	R <mark>TSLPGTL</mark>	WADT	DNTYNAT	RD	AAAVDAHYYA
_P39899	LNETLFTLLS	QLIGYTGKEI	VSGTSVF	NE	PAAVDAHANA
_Q3HTI0	R <mark>STLPGTL</mark>	WADA	DNVFNAA	¥D	AAAVDAHFYA
_Q2QC89	TEFGIRDV	<mark>R I T</mark> T	RYEGY	DF	RRTILSTVH <mark>E</mark>
_P42663	IAIGPGDV	<mark>R I T</mark> T	RYYED	FF	NAGIFGTLHE
_W5RWH8	VELRRRAL	GLDR	VHSYDLY VPL	VGETMKPIPV	ETAKTLIVEG
_Q8G6Z9	WDGPDADH	KPTSD	DIPWARQP	<mark>E</mark> RK	VTIEDIKYVL
_Q84FM9	TGTSMATP	HVSGLV	ALLLQKY		PTAKPWQ
_H2BKX5	DGTSMAAP	AVSGVF	TLWQEWAI	HAS	STNMPFKSAT
_H6WCS0	AGTSMATP	H V S G V A	ALVISAAN	<mark>s</mark>	- VNKNLTPAE
_082882	VGYYD				-PEGTLSSYI
_Q8VSL2	VISTEKTDDA	TKWVLT	GYQTTADA	GAS	KAAKDFMASG
_B2RITO	APNRHGVP	<mark>GFG</mark> Q	KWNEQISG	DYG	GQNMRDYLTA
_Q93JY4	CVDGRGTG	GRGS	DFEKCTYL	<mark>K</mark> IG	ELESKDQVET
_Q7MUW6	TVDSRGSA	NRGA	AFEQVIHR	RLG	QTEMADQMC G
_P41363	LGVAPSAD	LYAVK	VLDRNGS	GSL	ASVAQGIEWA
_P04189	LGVAPSAS	LYAVK	VLDSTGS	GQY	SWIINGIEWA
_Q29ZA8	LGVAPSAS	LYAVK	VLDRNGD	GQY	SWIISGIEWA
_Q45300	LGVAPSVS	LYAVK	VLNSSGS	GSY	SAIVSGIEWA
_099405	LGVAPSAE	LYAVK	VLGASGS	GSV	SSIAQGLEWA
_E0XH65	LGVAPEVD	LFAVK	VLSASGS	GSI	SSIAQGLEWA
_Q45670	AGMAPNTR	ILAVR	ALDRNGS	GTL	SDIADAIIYA
_Q56365	AGMAPNAS	IMPVR	VLNNSGS	GTM	AAVANGIAYA
_G8HV17	RGPAPEAN	LIGVK	VLNKQGS	GTL	ADIIEGVEWC
_P80146	YGVAKGVT	LHPVR	VLDCNGS	GSN	SSVIAGLDWV
_A0A0C4XY83	YGVAKNAD		VLNDAGS	GTT	ASVVGGIDWV
_Q6W4N2	WGVAPEAK	LWSYK	VLSDGGS	GYA	DDIAYAIRYA
_Q45621	IGTAPKAK		VLSGQGY	GDT	KWVIEGVRYA
_P74937	IGVAPECQ	LLVVK	VLSNRGF	GTT	EWVVEGIRHA
_J9XWB6	LLDDIAAI	QHLYG	ANLST	RTG	DTVYGFNSNT
_007121	ALEKFVAL	HASKN	LRFDLEE	ADG	RATITLICKS
_Q9L4G1	DGEAPGRE		VC INFC	SAA	WOCCAMPERK
_F23341	TAVCEDBY		VB-DDDK		LEKDITRIFE
_F 54070	OSCP		IX-OLSD		TRIFFKCDAD
DOMK10	VOTREVIE		GRIADCA		ACKAVAPOVT
	PCSSHNYE	EVIDO	VAFKSCR		MYDOLGCONS
033599	YGTYYTTD	SNGDY	HHTPDCN		AMEDNKEVSY
Consistency	5766566500	0000024665	5444566000	000000355	6566665547

	<u></u> . <u> 111</u>	0	0 113	0 114	0 <u></u> 1150
_P06874	GVVY-DYYKN	VHGRLSYDG-			<mark>SNA</mark>
_P23384	GVVY-DYYKN	VHGRLSYDG -			<mark>SNA</mark>
_P43133	GVTY-DYYKN	VHNRLSYDG -			<mark>NNA</mark>
_Q43880	GVVY-DYYKN	VHGRLSYDG-			<mark>SNA</mark>
_Q59223	GVVY-DYYKN	VHGRLSYDG -			<mark>SN</mark> A
_POCH29	GVTY-DYYKN	KF <mark>NRNS</mark> YDN –			<mark>AGR</mark>
_P39899	QAVY-DYYSK	TFGRDSFDQ-			<mark>NGA</mark>
_Q3HTI0	GRTY-DYYKA	TFNRN <mark>S</mark> IND-			<mark>AGA</mark>
_020C89	FGHALYEL	QQDERFMFS-			PIAG
_P42663	MGHALYEQ	GLPEAHWGT-			PRGE
_W5RWH8	LKP LGADYIK	QVHRAFQERW	LDVFPRPKKY	TGGYNTGAYD	THPFILLNYN
_Q8G6Z9	SSHYQGTPFD	PYGQLGDE			<mark>RT</mark> R
_Q84FM9	IRKMLEQNAL	DIE-TTGYDE			KAGYGLIQAN
_H2BKX5	LRALMAHTAD	EAGRAAGPDH			LFG <mark>WGV</mark> INAK
_H6WCS0	LKDVLVSTTS	PFNGRLDR			ALGSGIVDAE
_082882	YPAMYGAYGF				TYSDDSQ
_Q8VSL2	YKSFLTEVNN	LNKRMGDLRD	TQ	GDAG	VWARIMNGTG
_B2RITO	VDEMKKEPYV	DGDRI <mark>G</mark>			AVGASYGGFS
_Q93JY4	AIYMGRLPYV	DKNRIG			IWGWSYGGFN
_Q7MUW6	VDFLKSQSWV	DADRIG			VHGWSYGGFM
_P41363	INN	NMHIINM			- SLGSTS
_P04189	ISN	NMDVINM			- SLGGPT
_Q29ZA8	VAN	NMDVINM			-SLGGPN
_Q45300	TTT	GMDVINM			- <mark>slggas</mark>
_Q99405	GNN	GMHVANL			- SLGSPS
_E0XH65	AEN	NIDVANL			- <mark>S L G S P S</mark>
_Q45670	ADS	GAEVINL			-SLGCDC
_Q56365	AQN	GADVISL			-SLGGTS
_G8HV17	IQYNEDNPDE	PIDIMSM			- SLGGDALRY
_P80146	TQNHVK	- PAVINM			- <mark>S L GG G A</mark>
_A0A0C4XY83	TGNASG	- PSVANV			- <mark>S L G G G A</mark>
_Q6W4N2	ADQGASNG	VK <mark>VVIS</mark> M			- <mark>SLGSSV</mark>
_Q45621	INWRG-PNNE	RVRVI <mark>SM</mark>			- <mark>S L G G R I</mark>
_P74937	INWEG-PNGE	KVQVL <mark>S</mark> M			- <mark>SLGGKE</mark>
_J9XWB6	GRDFLSTTSN	SQ <mark>KVIF</mark> A			- <mark>A W D A</mark>
_007121	AHGAMPEKGI	NGATY <mark>L</mark> T			- LF LNQFD
_Q9L4G1	VHPAV	AKGQMIN			- A V Q
_P23341	GRLCNPNLPT	EEVFTAP			-HRERVEG
_P94870	LHKYLGGVDF	DDYVVLT			-NAP-DHE
_G5DCB7	FAMSAKDLNL	IR <mark>AIPV</mark> M			- IELGVDS
_P9WK19	TDELD	RIAHEYL			VDNGAY
_P46544	SIPDDQAETA	YT <mark>AQTWV</mark>			KELENV
_033599	TFVDAQGHTH	YFYNCYP			KNANAN
Consistency	6652133333	5565564000	0000000000	0000000000	0336652000

		116	0117	<u>0</u>	80 11	901200
_P06874		AIRSTV	HYGRGYNNAF	WNGSQM	<mark>VYGDGD</mark>	GQTFLPFSGG
_P23384		AIRSTV	HYG <mark>RGY</mark> NNAF	WNGSQM	<mark>V Y G D G D</mark>	GQT <mark>F</mark> LPFSGG
_P43133		AIRSSV	H Y S <mark>Q G Y</mark> N N A F	WNGSQM	<mark>V</mark> YGDGD	GQT <mark>F</mark> IPLSGG
_Q43880		AIRSTV	HYG <mark>RG</mark> YNNAF	WNGSQM	<mark>VYGDGD</mark>	GQTF LPFSGG
_Q59223		AIRSTV	HYGRGYNNAF	WNGSQM	<mark>VYGDGD</mark>	GQ <mark>TF</mark> LPFSGG
_POCH29		PLKSTV	H Y S S G Y N N A F	WNGSQM	<mark>V</mark> YGDGD	GTTFVPLSGG
_P39899		RITSTV	HVGKQWNNAA	WNGVQM	<mark>v</mark> ygdgd	GSKFKPLSGS
_Q3HTI0		PLKSTV	HYGSKYNNAF	WNGSQM	<mark>vygdgd</mark>	GVTFTSLSGG
_020C89		GVSL <mark>G</mark> I	H E S Q S R F W E N	VIGRSR	<mark>EFAELI</mark>	HPVLKENLPF
_P42663		AASLGV	HESQSRTWEN	LVGRSL	<mark>GFWERF</mark>	FPRAKEVFSS
_W5RWH8	GSLD	GVLTMA	HELGHAMHSV	YTNRAQPYHY	SGHSIFTAEV	ASTANEWLML
_Q8G6Z9		HMYR <mark>T</mark> I	GINRQSQLAV	MQIRPY	<mark>RPQASR</mark>	AIQWMAYGSN
_Q84FM9	AVED	DLPSSG	GLDYQLTVTD	AYSSWRVPSV	SVSLLGISST	GRNVRYFAKT
_H2BKX5	AGVE	VMLAAK	DKRSTYILEN	ELREQQK Y	THEIQVGEKM	SKMVVTLAWT
_H6WCS0	AAVN	SVL-GN	EGNNGRDDRR	DNVA	PVENARNYAN	NSIKFIRDY-
_082882		NLSD	NDCQLQVDTK		EGQLRFRL	ANHR
_Q8VSL2	SADG	DYSDNY	THVQIGVDRK	HELDGVDL	FTGALLTYTD	SNASSHAFSG
_B2RITO	VYWL	-AGHHD	KRFAAFIAHA	GIFNLEMQ	YATTEEMWFA	NWDIGGPFWE
_Q93JY4	TLMS	-MSEGR	PVFKAGVSVA	PPTNWKYY	<mark>DTIY</mark>	TERYMRTP
_Q7MUW6	TTNL	-MLT <mark>H</mark> G	DVFKVGVAGG	PVIDWNRY	<mark>E I M Y</mark>	GERYFDAP
_P41363	G	SSTLEL	AVNRANNAG I	LLVGAAG	<mark>N T G R</mark>	Q-GVNYPA
_P04189	G	STALKT	VVDKAVSSGI	VVAAAAG	– – – – <mark>N E G</mark> S S G	STS-TVGYPA
_Q29ZA8	G	STALKN	AVD TANNRGV	VVVAAAG	<mark>N S G S T G</mark>	STS-TVGYPA
_Q45300	v	STAMKQ	AVDHAYARGA	VVVSSAG	– – – – <mark>N</mark> S <mark>G</mark> S S G	NTN-TIGYPA
_099405	P	SATLEQ	AVN SAT SRGV	LVVAASG	<mark>N S G A</mark>	G-SISYPA
_E0XH65	P	SQTLEQ	AVNDATDSGV	LVVAAAG	<mark>N S G T</mark>	<mark>S-SLGYPA</mark>
_Q45670	B	TTTLEN	AVNYAWNKGS	VVVAAAG	– – – – <mark>n n g s</mark> – –	<mark>S-TTFEPA</mark>
_Q56365	G	SSALQS	AVQQAWNSGA	VVVAAAG	<mark>N S S</mark> S	<mark>S-TPNYPA</mark>
_G8HV17	DHEQ	EDPLVR	AVEEAWSAGI	VVCVAAG	<mark>N S G P D</mark> -	-SQ-TIASPG
_P80146		STALDT	AVMNAINAGV	TVVVAAG	<mark>NDNRD</mark> -	- A C - F Y S - P A
_A0A0C4XY8	3	DTTLDQ	AVRNSIAAGV	TYAIAAG	<mark>N S N A N</mark> -	– A A – N Y S – P A
_Q6W4N2	K	DSLI <mark>S</mark> N	AVTYAQQRGA	LVVAAAG	– – – – <mark>N</mark> S <mark>G P S</mark> –	– AN – TIGYPG
_Q45621	D	TPEL <mark>H</mark> Q	AIKHAVAEDI	LVVCAAG	– – – – <mark>N E G</mark> D G N	HDTDEYAYPG
_P74937	N	DPRLHD	AIKEAVASGR	LVVCAAG	– – – – <mark>N D G D G N</mark>	EETDEFAYPG
_J9XWB6	G	GNDTFD	FSGYTANQR I	NLNEKSF	<mark>SDVGGL</mark>	KG <mark>NV</mark> SIAAGV
_007121	FADG	AAAFIK	VGAEKLLEDH	EGEKLGT	<mark>AFVDEL</mark>	MEN <mark>TSMNAGV</mark>
_Q9L4G1	V	GIDF <mark>H</mark> N	QLPEHDRPEH	TDGREGF	<mark>F H L L S F</mark>	DG <mark>TV</mark> DHAHLA
_P23341	VVRA	SRPL	ALSGQLVEGL	WARFEGG	<mark>VAVEVG</mark>	AEKGEEVLKK
_P94870	YDKI	YGL	PAEDNVSGSI	RIKLLNV	<mark>PMEYL</mark> -	TAASIAQ
_G5DCB7	LKIE	GRMK <mark>S</mark> I	HYVATVVSVY	RKVIDAY	<mark>CADPDH</mark>	FTIREEWVRE
_P9WK19		PSTLGY	KGFPKSC	CTSLNEV	<mark>ICHGIPD</mark>	STVITDGDIV
_P46544		REQL <mark>G</mark> -	LDQIH	LLGQSWG	GMLALIY	LCDYQPEGVK
_033599		GSGQTY	VNPATAGDNN	DYTASQS	QQHINQY	GYQSNVGPDA
Consistency	0002	555565	6556746675	4665652000	0000656543	3462655456

	121	0 122	20 123	30124	40 1250
_P06874	ID <mark>VVGHEL</mark> TH	AVTDYTAGLV	YQNE <mark>S</mark> GAINE	AMSDIFGTLV	EFY <mark>ANRN</mark>
_P23384	ID <mark>VVGHE</mark> LTH	AVTDYTAGLV	YQNE <mark>SGAIN</mark> E	AMSDIFGTLV	EFY <mark>ANRN</mark>
_P43133	ID VVAHELTH	AVTDYTAGLI	YQNE <mark>SGAIN</mark> E	AISDIFGTLV	EFY <mark>ANKN</mark>
_Q43880	IDVVGHELTH	AVTDYTAGLV	YQNE <mark>SGAINE</mark>	AMSDIFGTLV	EFYANRN
_Q59223	IDVVGHELTH	AVTDYTAGLV	YQNE <mark>SGAINE</mark>	AMSDIFGTLV	EFYANRN
_POCH29	LDVIGHELTH	ALTERSSNLI	YQYE <mark>SGALN</mark> E	AISDIFGTLV	EYYDNRN
_P39899	LDIVAHEITH	AVTQYSAGLL	YQGEPGALNE	SISDIMGAMA	DRDD
_Q3HTI0	IDVIGHELTH	AVTENSSDLI	YQNESGALNE	AISDIFGTLV	EYYDNRN
_Q2QC89	MANYTPEDVY	LYFNMVRPDF	IRTESDVVTY	NFHILLRFK-	-LERMML
_P42663 W5RWH8	LADVRLEDFH DYLYKOAKTK	FAVNAVEPSL EEKLRLLIEO	IRVEADEVTY IEOIRGTL-Y	NLHILVRLE- TOVMYSEFER	-LELALF MIHDKVR
	PFNTLVPFFP	NVDTTPAYLE	DTTTRVTSEN	FYWANRIIAA	
_Q84FM9	NTEGIAKFIG	I	-DSGRYDVIV	SGPDTKVNSN	GLTRVAF
H2BKX5	DAPGVVSYQN	SDENYKRNNG	DLVNDLDVVV	RKGKNTYYPW	MLNKDFNDLR
H6WCS0	RLTSSV		IEVEG	RSGAAN	
_082882	ANNTVMNKFH	INVPTES	QP TQATLVCN	NKILDTK	-SLTPAP
_Q8VSL2	K N K S V G G G L Y	ASALFNSGAY	FDLIGKYLHH	DNQHTANFAS	LGTKDYS
_B2RITO	KDNVVAQRTY	ATSPHKYVQN	WD TP I LMIHG	ELDFRILAS-	-QAMAAF
_Q93JY4	KENPSGYE	TN-PIQRSNK	LHGALLICHG	VPDDNVHPQ-	-NTFEYA
_Q7MUW6	QENPEGYD	AANLLKRAGD	LKGRLMLIHG	AIDPVVVWQ-	-HSLLFL
_P41363	RYSG <mark>VMAVAA</mark>	VDQNG	QR <mark>A</mark> SF <mark>ST</mark> Y	GPEI	<mark>EISA</mark>
_P04189	KYPSTIAVGA	VNSSN	QR <mark>A</mark> SF <mark>SS</mark> A	GSEL	DVMA
_Q29ZA8	KYDSTI <mark>A</mark> VAN	VNSSN	VR <mark>N</mark> SS <mark>SS</mark> A	GPEL	<mark>DVS</mark> A
_Q45300	KYDS <mark>VIAVGA</mark>	VDSNS	NR <mark>A</mark> SF <mark>SS</mark> V	GAEL	<mark>e</mark> vma
_Q99405	RY <mark>ANAMAVGA</mark>	TDQNN	– – NR <mark>A</mark> SF <mark>SQ</mark> Y	GAGL	DIVA
_EOXH65	RY <mark>DNAMA</mark> VGA	TDQSD	SL <mark>A</mark> SF <mark>SQ</mark> Y	GEGL	DLVA
_Q45670	SY <mark>ENVIAVGA</mark>	VDQYD	RL <mark>A</mark> SF <mark>SN</mark> Y	GTWV	DVVA
_Q56365	YYSQAIAVAS	TDSND	SL <mark>S</mark> YF <mark>SN</mark> Y	GSWV	<mark>DVAA</mark>
_G8HV17	VSEKVITVGA	LDDNNTASSD	DDTVASFSSR	GPTV	YGKEKPDILA
_P80146	RVTAAITVGA	TTSTDYR-	<mark>ASFSN</mark> Y	GRC	<mark>LDLFA</mark>
_A0A0C4XY83	RVSEAITVGA	TQSNDSR-	<mark>A</mark> SY <mark>SN</mark> W	GAT	<mark>V</mark> DIF <mark>A</mark>
_Q6W4N2	ALKDAVAVAA	LENIQQNG	TY RVADFSSR	GNP ATAGDY V	IQERDVEVSA
_Q45621	AYPEVVQVGS	VNLEG	EI <mark>SRFSN</mark> T	NCA	<mark>IDLVA</mark>
_P74937	AYPEVVQVGS	VSLSG	EISRFSNS	NCK	IDLVA
_J9XWB6	TIENAIGG	SGNDVIVG	NAANNVLK	GGAG	NDVLFG <mark>G</mark> GGA
_007121	WSFDENGEGK	IALNFRFP	QGNSPERM	QEIL	AKLDGVVE
_Q9L4G1	YIIRD	FERDGLEE	RKNLVKSI	VKKM	N D E F G T E R I K
_P23341	LLDTDEGARR	LGEVALVP	ADNPIAKT	GLVF	FDTLFDENAA
_P94870	LKDGEAVW	FGNDVLRQ	MDRKTGYL	DTNL	YKLDDLFG
_G5DCB7	LEKCANRETA	PSFFDGFP	DYT	NHMY	GTHSLKTTRE
_P9WK19	NIDVTAYI	GGVHGDTNAT	FPAGDVAD	EHR	<mark>LLVD</mark>
_P46544	SLILSSTLAS	AKLWSQELHR	LIKYLPKG	EQA	<mark>AIKE</mark>
_033599	SYYSHSNNNQ	AYNSHDGNGK	VNYPNGTSNQ	NGG	SASK
Consistency	5465656566	6656522321	1155755665	7561111113	1110006556

		127	0128	30 1290)
_P06874	PDWEIGEDIY	T	PGVAGDALRS	MS-DPAKYGD	PDHY
_P23384	PDWEIGEDIY	T	PGVAGDALRS	MS-DPAKYGD	PDHY
_P43133	PDWEIGEDVY	T	PGISGDSLRS	MS-DPAKYGD	PDHY
Q43880	PDWEIGEDIY	T	PGIAGDALRS	MS-DPAKYGD	<mark>PDH</mark> Y
Q59223	PDWEIGEDIY	T	PGIAGDALRS	MS-DPAKYGD	PDHY
POCH29	PDWEIGEDIY	T	PGTSGDALRS	MS-NPAKYGD	PDHY
_P39899	WEIGEDVY	T	PGIAGDSLRS	LE-DPSKQGN	PDHY
Q3HTI0	PDWEIGED I Y	T	PGKAGDALRS	MS-DPAKYGD	PDHY
_Q2QC89	NEG-VKAKDL	P	ELWNEEMERL	LGIRPKTYAE	GILQ
_P42663	RGE-LFLEDL	P	EAWREKYRAY	L G V A P R D Y K D	GVMQ
W5RWH8	QGGSLTADEL	N	HLWLGLLKTY	YGPAYAA	DPGA
_Q8G6Z9	<mark>LCDGAF</mark>	R	STSNAVE	<mark>RYQE</mark> K	TGAM
Q84FM9	RKAEERTVIF	QA	ALVDNRNNAV	RFSSSASLRL	VNPPP
_H2BKX5	AIQGVNDVDN	IE	KIELYDVEPG	T Y VI EVT HKG	KG
_H6WCS0	GKI	N L	ALDIRHGNRS	QLSIQL	TSPAG
_082882	EGLTYTVNGQ	ALPAKENEGC	IVSVNSGKRY	CLPVGQRSG-	<mark>YSL</mark> P
_Q8VSL2	SHSWYAGAE V	GYRYHLTKES	WVEPQIELVY	G S V S G K A F S W	EDRGMALSMK
B2RITO	DAAQLRGVPS	E	MLIYPDENHW	V L Q P Q N A L L F	HRT F
_Q93JY4	EALVQADKDF	K	EVYYTNRNHS	I R G G N S R N H L	<mark>lrq</mark> i
_Q7MUW6	DACVKARTYP	D	YYVYPSHEHN	VMG-PDRVHL	YETI
_P41363	PGVNVNSTY-		<mark>TGNRYVS</mark>	L <mark>S G T S M A</mark> T P H	VAGVA
_P04189	PGVSIQSTL-		PGGTYGA	Y N G T S M A T P H	V <mark>AGA</mark> A
Q29ZA8	PGTSILSTV-		PSSGYTS	Y T G T S M A S P H	VAGAA
_Q45300	PGAGVYSTY-		PTNTYAT	L N G T S M A S P H	VAGAA
_Q99405	PGVNVQSTY-		PGSTYAS	L N G T S M A T P H	VAGVA
E0XH65	PGVGVESTY-		PGGGYDS	L S G T S MA A P H	VAGAA
_Q45670	PGVDIVSTI-		TGNRYAY	M S G T S M A S P H	VAGLA
_Q56365	PG <mark>SNIYST</mark> Y-		LNSSYAS	L S G T S M A T P H	V <mark>AGL</mark> A
_G8HV17	PGVNIISLRS	PNSYIDKLQK	SSRVGSQYFT	MSGTSMATPI	CAGIA
_P80146	PGQSITSAWY	T	SSTATNT	I SGTSMATPH	VTGAA
A0A0C4XY83	PGTSITAAWR	T	SDTATNT	I SGTSMATPH	VAGVA
_Q6W4N2	PGRAVESTWN	N	<mark>G</mark> <mark>G</mark> YNS	I SGTSMATPH	ISGLA
_Q45621	PGEEIISTY-		LNNGYAV	L S G T S MA T P H	VSGAA
_P74937	PGEKILSTY-		<mark>PGDKFAT</mark>	L T G T S M A T P H	VTGAA
_J9XWB6	DELWGGAGKD	IF	<mark>VFSAASDS</mark>	APGASDWIRD	FQKGI
_007121	VELSKHLHTP	H Y	VPMSDPLV	STLIDVYEKH	TGLKG
_Q9L4G1	LQMNDQYYNM	AD	<mark>ELKKH</mark> MDI	V D L A R D A Y K A	EGLEV
_P23341	SHIAFGQAY-	AE	NLEGRPSG	EEFRRRGGNE	SM-VH
P94870	VDLKMSKAD-	RL	KTGVGEVS	HAMTLVGVDE	DNGEV
_G5DCB7	FAGLVLGYD-	PE	TGIATVQQ	RNHFRPG	DE
_P9WK19	RTRE ATM	R	AINTVKPG	RALSVIGRV-	IESY
_P46544	AETTGNYDSL	A	YQAANAHF	MDQHAIKLTP	DLPEP
_033599	ATASGHAKDA	S	WLTSRKQL	QPYGQYHGG-	GAHY
Consistency	6645656652	4000000000	1125676566	5635666565	2000006665

Multiple sequence alignment of the thermostable proteolytic enzymes. More conserved parts of the alignment have been presented from amino acid residues from 1000 to 1300