Ferdowsi University of Mashhad

Document Type : Research Articles

Authors

1 Ferdowsi University of Mashhad

2 University of Melburn

Abstract

Microglia cells are a subset of central nervous system (CNS) macrophages. Changes in the CNS such as injury, or developmental events, follow by morphological and physiological changes in microglia cells. In this study organotypic brain slice cultures under serum free condition were used to investigate the morphology and lectin histochemistry of microglia and macrophages in the CNS in vitro. Microglial cells exhibited dramatic morphological changes in the organotypic brain slice culture. Immediately after slicing microglias were seen to have the same morphology as they do in the intact brain: they had small cell bodies from which radiated several highly ramified processes. After 1 day in vitro all microglia transformed into an active form with round soma and no processes. At 5 days in vitro, and especially at 9 days in vitro, many of the microglia had tended to return to the ramified phenotype. The expression of different carbohydrates was examined at the 0, 1, 5 and 9 days in vitro time periods by employing Lycopersicon esculentum tomato lectin (LEL lectins) and Sambucus nigra (SNA). Microglial cells with different morphology intensely stained with LEA . SNA stained the ramified microglia only after they re-ramified at 5 DIV and 9 DIV. The results of this study confirmed that the expression of carbohydrate structures in these cells would undergo changes commensurate with the changes in morphology.

Keywords

Rutishauser U. (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9: 26-35.
Acarin L., Vela J. M., Gonzalez B. and Castellano B. (1994) Demonstration of poly-N-acetyl lactosamine residues in ameboid and ramified microglial cells in rat brain by tomato lectin binding. J Histochem Cytochem 42:1033-1041.
Alturfan A. A., Uslu E., Alturfan E. E., Hatemi G., Fresko I. and Kokoglu E. (2007) Increased serum sialic acid levels in primary osteoarthritis and inactive rheumatoid arthritis. Tohoku J Exp Med 213:241-248.
Ananth C., Gopalakrishnakone P. and Kaur C. (2003) Induction of inducible nitric oxide synthase expression in activated microglia following domoic acid (DA)-induced neurotoxicity in the rat hippocampus. Neurosci Lett 338:49-52.
Billiards S. S., Haynes R. L., Folkerth R. D., Trachtenberg F. L., Liu L. G., Volpe J. J. and Kinney H. C. (2006) Development of microglia in the cerebral white matter of the human fetus and infant. The Journal of comparative neurology 497:199-208.
Boyzo A., Ayala J., Gutierrez R. and Hernandez R. J. (2003) Neuraminidase activity in different regions of the seizing epileptic and non-epileptic brain. Brain Res 964:211-217.
Carlsson S. R. and Fukuda M. (1990) The polylactosaminoglycans of human lysosomal membrane glycoproteins lamp-1 and lamp-2. Localization on the peptide backbones. The Journal of biological chemistry 265:20488-20495.
Colton C. A., Abel C., Patchett J., Keri J. and Yao J. (1992) Lectin staining of cultured CNS microglia. J Histochem Cytochem 40:505-512.
Czapiga M. and Colton C. A. (1999) Function of microglia in organotypic slice cultures. J Neurosci Res 56:644-651.
de-Castro J., Rodriguez M. C., Martinez-Zorzano V. S., Hernandez-Hernandez A., Llanillo M. and Sanchez-Yague J. (2008) Erythrocyte and platelet phospholipid fatty acids as markers of advanced non-small cell lung cancer: comparison with serum levels of sialic acid, TPS and Cyfra 21-1. Cancer Invest 26:407-418.
Fischer H. G. and Reichmann G. (2001) Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol 166:2717-2726.
Guillemin G. J. and Brew B. J. (2004) Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 75:388-397.
Hailer N. P., Jarhult J. D. and Nitsch R. (1996) Resting microglial cells in vitro: analysis of morphology and adhesion molecule expression in organotypic hippocampal slice cultures. Glia 18:319-331.
Holzhauser R. and Faillard H. (1988) Sialic acids in human lymphocytes. Qualitative and quantitative alterations in cancer cases. Carbohydr Res 183:89-95.
Kaur C., Dheen S. T. and Ling E. A. (2007) From blood to brain: amoeboid microglial cell, a nascent macrophage and its functions in developing brain. Acta pharmacologica Sinica 28:1087-1096.
Lari R., Khan J. A. and Kitchener P. D. (2012) Organotypic brain slice culture promotes the transformation of haemopoietic Journal of Cell and Molecular Research 4:11-17.
Ling E. A. and Wong W. C. (1993) The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 7:9-18.
Lutsik B. D., Iashchewnko A. M. and Lutsik A. D. (1991) Lectin-peroxidase markers of the microglia in paraffin sections. Arkhiv patologii 53:60-63.
Mackowiak M., Chocyk A., Markowicz-Kula K. and Wedzony K. (2007) Acute activation of CB1 cannabinoid receptors transiently decreases PSA-NCAM expression in the dentate gyrus of the rat hippocampus. Brain Res 1148:43-52.
Maganti S., Pierce M. M., Hoffmaster A. and Rodgers F. G. (1998) The role of sialic acid in opsonin-dependent and opsonin-independent adhesion of Listeria monocytogenes to murine peritoneal macrophages. Infection and immunity 66:620-626.
Maruhama Y., Hikichi I., Saito F., Hashimoto T., Kaneko H., Takahashi K. and Kaito I. (1983) Low density lipoprotein-sialic acids in patients with non-insulin dependent diabetes mellitus. Tohoku J Exp Med 141:199-205.
Navascues J., Calvente R., Marin-Teva J. L. and Cuadros M. A. (2000) Entry, dispersion and differentiation of microglia in the developing central nervous system. Anais da Academia Brasileira de Ciencias 72:91-102.
Rezaie P., Bohl J. and Ulfig N. (2004) Anomalous alterations affecting microglia in the central nervous system of a fetus at 12 weeks of gestation: case report. Acta Neuropathol 107:176-180.
Rezaie P., Dean A., Male D. and Ulfig N. (2005) Microglia in the cerebral wall of the human telencephalon at second trimester. Cereb Cortex 15:938-949.
Rezaie P., Patel K. and Male D. K. (1999) Microglia in the human fetal spinal cord--patterns of distribution, morphology and phenotype. Brain Res Dev Brain Res 115:71-81.
Song Y., Morikawa S., Morita M., Inubushi T., Takada T., Torii R., Kitamura Y., Taniguchi T. and Tooyama I. (2006) Comparison of MR images and histochemical localization of intra-arterially administered microglia surrounding beta-amyloid deposits in the rat brain. Histology and histopathology 21:705-711.
Suzuki M., Nakayama J., Suzuki A., Angata K., Chen S., Sakai K., Hagihara K., Yamaguchi Y. and Fukuda M. (2005) Polysialic acid facilitates tumor invasion by glioma cells. Glycobiology 15:887-894.
Wielgat P. and Braszko J. J. (2012) The participation of sialic acids in microglia-neuron interactions. Cell Immunol 273:17-22.
Zambenedetti P., Giordano R. and Zatta P. (1998) Histochemical localization of glycoconjugates on microglial cells in Alzheimer's disease brain samples by using Abrus precatorius, Maackia amurensis, Momordica charantia, and Sambucus nigra lectins. Exp Neurol 153:167-171.
CAPTCHA Image