Ferdowsi University of Mashhad

Document Type : Letters / Commentaries

Authors

ACCER, Mashhad

Abstract

Skin grafting always has been considered a challenging task for the researchers and tissue engineers from its first introduction in 1871 by Reverdin. Skin substitutes, composed of degradable synthetic or biological components, are being considered as emergency replacements/grafts to the damaged skin. A number of technical developments in this filed have led to development of several skin substitutes, such as Biobrane®, Integra®, OrCel®, Suprathel® etc which are available for clinical utilization. From these, some characteristics, including infection resistance, water loss prevention, long shelf life, easy to store are set as criteria for assessment of the products. Post grafting problems associated with available skin substitutes questioned their reliability and reject them as an ideal skin substitute. Innovative tissue engineering approaches based on biological scaffolds and clinical grade stem cells could be an attractive alternative for available skin substitutes.

Keywords

1. Myers S. R., Partha V. N., Soranzo C., Price R. D., Navsaria H. A. (2007) Hyalomatrix: A temporary epidermal barrier, hyaluronan delivery, and neodermis induction system for keratinocyte stem cell therapy. Tissue Eng 13: 2733-41.
2. Burke J. F., Yannas I. V., Quinby W. C., Bondoc C. C., Jung W. K. (1981) Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194: 413-428.
3. Gerlach J. C., Johnen C., Ottoman C., Bräutigam K., Plettig J., Belfekroun C., Münch S., Hartmann B. (2011) Method for autologous single skin cell isolation for regenerative cell spray transplantation with non-cultured cells. Int J Artif Organs 34(3): 271-9.
4. Uhlig C., Rapp M., Hartmann B., Hierlemann H., Planck H., Dittel K. K. (2007) Suprathel-an innovative, resorbable skin substitute for the treatment of burn victims. Burns 33(2): 221-9.
5. Fikry K. and Bittner E. A. (2013) Tegaderm™ trauma in the operating room. Anesthesiology 119(4): 955
6. Atiyeh B. S., Gunn S. W., Hayek S. N. (2005) State of the art in burn treatment. World J Surg 29(2): 131-48.
7. Horch R. E., Kopp J., Kneser U., Beier J., Bach A. D. (2005) Tissue engineering of cultured skin substitutes. J Cell Mol Med. 9(3): 592-608.
8. Marcus C. Ferreira, Andre O. Paggiaro, Cesar Isaac, Nuberto T. Neto, Gustavo B. Dos, Santos (2011) Skin substitutes: current concepts and a new classification system. Rev Bras Cir Plast 26(4): 696-702.
9. Ahmad S. Halim, Teng L. Khoo, and Shah J. M. Yussof. (2010) Biologic and synthetic skin substitutes: An overview. Indian J Plast Surg 43: S23–S28.
10. Van-der-Veen V. C., van-der-Wal M. B., van-Leeuwen M. C., Ulrich M. M., Middelkoop E. (2010) Biological background of dermal substitutes. Burns 36: 305–21.
11. Sheridan R. L. and Moreno C. (2001) Skin substitutes in burns. Burns 27(1): 92.
12. Ortega-Zilic N., Hunziker T., Läuchli S., Mayer D. O., Huber C., Baumann Conzett K. (2010) EpiDex® Swiss field trial 2004-2008. Dermatology 221(4): 365-72.
13. Hafner J., Kuhne A., Trueb R. M. (2006) Successful grafting with EpiDex in pyoderma gangrenosum. Dermatology 212(3): 258-9.
14. Brown-Estris M., Cutshall W., Hiles M. (2002) A new biomaterial derived from small intestinal submucosa and developed into a wound matrix device. Wounds 14: 150-166.
15. Demling R., Niezgoda J., Haraway G., Mostow E. (2004) Small intestinal submucosa wound matrix and full thickness venous ulcers. Wounds 16: 18-23.
16. Niezgoda J. A., Van Gils C. C., Frykberg R. G., Hodde J. P. (2005) Randomized clinical trial comparing OASIS wound matrix to regranex gel for diabetic ulcers. Adv Skin Wound Care 18(5): 258-66.
17. Eisenberg M. and Llewelyn D. (1998) Surgical management of hands in children with recessive dystrophic epidermolysis bullosa: use of allogeneic composite cultured skin grafts. Br J Plast Surg 51: 608–13.
18. Still J., Glat P., Silverstein P., Griswold J., Mozingo D. (2003) The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns 29: 837-41.
19. Hansen S. L., Voigt D. W., Wiebelhaus P., Paul C. N. (2001) Using skin replacement products to treat burns and wounds. Adv Skin Wound Care 14:37–44.
20. Demling R. H. (1985) Burns. N Engl J Med 313: 1389–98.
21. Rahmanian-Schwarz A., Beiderwieden A., Willkomm L. M., Amr A., Schaller H. E., Lotter O. (2011) A clinical evaluation of Biobrane(®) and Suprathel(®) in acute burns and reconstructive surgery. Burns 37(8):1343-8.
22. Chua A. W., Ma D. R., Song I. C., Phan T. T., Lee S. T., Song C. (2008) In vitro evaluation of fibrin mat and Tegaderm wound dressing for the delivery of keratinocytes--implications of their use to treat burns. Burns (2):175-80.
23. Arda O., Göksügür N., Tüzün Y. (2014) Basic histological structure and functions of facial skin. Clin Dermatol 32(1): 3-13.
24. Blais M., Parenteau-Bareil R., Cadau S., Berthod F. (2013) Concise review: tissue-engineered skin and nerve regeneration in burn treatment. Stem Cells Transl Med 2(7): 545-51.
25. Kirsten A. Bielefeld, Saeid Amini-Nik, and Benjamin A. Alman. (2013) Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell Mol Life Sci 70(12): 2059–2081.
26. Reverdin J. L. (1871) Sur la greff epidermique. CR Acad Sci 73:1280.
27. Shah M., Revis D., Herrick S., Baillie R., Thorgeirson S., Ferguson M., Roberts A. (1989) Role of elevated plasma transforming growth factor β1 levels in wound healing. Am J Pathol 154: 1115-1124.
28. O’Kane, S. and Ferguson, M. W. (1997) Transforming growth factor βs and wound healing. Int J Biochem Cell Biol 29: 63–78.
29. Ferguson M. W. and O’Kane S. (2004) Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Phil Trans R Soc Lond B 359: 839–850.
30. MacNeil S. (2007) Progress and opportunities for tissue-engineered skin. Nature 445(7130): 874-80.
31. Irfan-Maqsood, M. (2013) Stem Cells of Epidermis: A Critical Introduction. Journal of Cell and Molecular Research 5(2):1-2.
32. Haifei S., Xingang W., Shoucheng W., Zhengwei M., Chuangang Y., Chunmao H. (2014) The effect of collagen-chitosan porous scaffold thickness on dermal regeneration in a one-stage grafting procedure. J Mech Behav Biomed Mater 29: 114-25.
33. Sriwiriyanont P., Lynch K. A., McFarland K. L., Supp D. M., Boyce S. T. (2013) Characterization of hair follicle development in engineered skin substitutes. PLoS One 8(6):e65664.
34. Abu Bakar Mohd Hilmi, Ahmad Sukari Halim, Hasnan Jaafar, Abu Bakar Asiah, and Asma Hassan. (2013) Chitosan Dermal Substitute and Chitosan Skin Substitute Contribute to Accelerated Full-Thickness Wound Healing in Irradiated Rats. BioMed Research International 2013:1-13
CAPTCHA Image