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Abstract 
 

Epithelial ovarian cancer (EOC), as a challenging disease among women with poor prognosis and unclear 

molecular pathogenesis, each year is responsible for 140000 deaths globally. Recent progress in the field revealed 

the importance of proteins as key players of different biological events. Considering the complicated protein 

interactions, taking a deeper look at protein-protein interactions (PPIs) could be considered as a superior strategy to 

unravel complex mechanisms encountered with regulatory cell signaling pathways of ovarian cancer. Hence, PPI 

network analysis was performed on differentially expressed genes (DEGs) of ovarian cancer to discover hub genes 

which have the potential to be introduced as biomarkers with clinical utility. A PPI network with 600 DEGs was 

constructed. Network topology analysis determined UBC, FN1, SPP1, ACTB, GAPDH, JUN, and RPL13A, with the 

highest Degree (K) and betweenness centrality (BC), as shortcuts of the network. KEGG pathway analysis showed 

that these genes are commonly enriched in ribosome and ECM-receptor interaction pathways. These pivotal hub 

genes, mainly UBC, FN1, RPL13A, SPP1, and JUN have been reported previously as potential prognostic biomarkers 

of different types of cancer. However, further experimental molecular studies and computational processes are 

required to confirm the function and association of the identified hub genes with epithelial ovarian cancer prognosis. 

 
Keywords: Epithelial Ovarian Cancer, Differentially Expressed Gene Analysis, PPI Network Analysis, Pathway 

Enrichment Analysis 

 

 
 

Introduction1∗  

 

Epithelial ovarian cancer (EOC) as a challenging 

disease is diagnosed in nearly a quarter of a million 

women, and it is responsible for 140000 deaths 

worldwide per annum (Krzystyniak et al., 2016; 

Torre et al., 2018). Lack of early diagnosis and 

empirically-validated treatments were considered as 

the most common causes of mortality (Cho et al., 

2015). During the past decade, extensive research 

has been conducted to identify methods to predict 

and evaluate cancer progression (Li et al., 2015; 

Loghmani et al., 2014). Currently, the use of 

biomarkers such as serum cancer antigen 125 

(CA125) and human epididymis protein 4 (HE4) is 

very common among all methods used to diagnose, 

prognose, and management of ovarian cancer 

(Archana et al., 2013). However, the potential of 
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these biomarkers for efficient prediction of outcome 

remains a significant challenge regardless of the 

different stages and complexity of the disease. Thus, 

the survival rate of EOC is still low, and there has 

not been any remarkable success in treatment, 

especially in patients with advanced epithelial 

ovarian cancer. 

Recently, some researchers proposed some target 

genes with specific coverage of a determined stage 

of the disease (Arnedos et al., 2019; Li et al., 2018; 

Zhang et al., 2019). In this regard, differentially 

expressed gene analysis (DEGA) (Anders et al., 

2010) as the most important application of RNA-Seq 

experiments, can be used to compare different genes 

expression levels between normal and cancerous 

cells. The results of such analyses reveal a list of 

differentially expressed genes (DEGs). Although, as 

most human cancers are very complex, and are 
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encountered with sets of genes and their complicated 

interactions, identification of the exact molecular 

mechanism is very difficult, especially, in human 

cases.  

Investigating protein-protein interactions (PPIs), 

with key roles in the biological function of the cells, 

is one of the beneficial methods to discover complex 

molecular mechanisms which are responsible for 

cell signaling and cell to cell communications 

(Huang et al., 2016). In a previous study, PPI 

networks were created based on the DEGs analysis 

to discover hub genes that have the potential to be 

introduced as biomarkers of esophageal squamous 

cell carcinoma (Wu et al., 2014). 

In the present study, RNA-seq data obtained from 

normal and cancerous cells of the ovarian tissue 

were compared statistically to discover DEGs. Then, 

Systems biology analyses such as gene ontology 

(GO) and pathways analysis (KEGG) (Ashburner et 

al., 2000; Kanehisa et al., 2000) were performed to 

provide insights into the key cellular processes 

which are responsible for normal/diseased condition. 

Furthermore, to explore new biomarkers, the PPI 

network was constructed by mapping all determined 

DEGs to the network data. Functional enrichment 

analysis was performed to assign functional 

categories to the subnetworks of genes.  

By introducing several hub genes, results of the 

present study may facilitate our vision regarding the 

molecular mechanisms involved in ovarian cancer 

pathogenesis. These experiments could be effective 

for defining proper treatment strategies in the 

clinical settings. However, further confirmatory 

studies are required for validation of data and 

announcement of novel panels of genes.  

 

Materials and Methods 
 

RNA sequencing data processing and differential 

gene expression analysis 

    Three separate Fastq data files for untreated 

ovarian tumor cell line SKOV-3, and normal cell line 

FT194 (De Cristofaro et al., 2016) were retrieved 

from the sequence read archive (SRA; 

http://www.ncbi.nlm.nih.gov/geo/). In order to 

provide clean data for downstream analyses, quality 

filtration was conducted to omit low quality 

sequence reads (more than 30% of reads) and 

adaptors (the first 15bp of Illumina reads) by the 

Trimmomatic program (Bolger et al., 2014). Then, 

using the HISAT2 alignment program (Kim et al., 

2015) all clean reads were mapped to the Homo 

sapiens (human) genome assembly GRCh37 (hg19). 

Counting of transcripts (mapping efficiencies 

(95%)) was performed with HTSeq (Anders et al., 

2014). Count data normalization was performed to 

determine statistically significant DEGs across two 

conditions. The DESeq2-Bioconductor package 

(version 1.6.3) was applied to improve stability and 

interpretability of estimates. Adjusted P value<0.01 

and a |log2FC|>2 were defined as the cut-off criteria. 

Biological significance of DEGs was explored 

through GO term enrichment analysis including 

biological processes (BP), cellular components 

(CC), and molecular functions (MF), and then 

KEGG pathway enrichment analysis was performed 

using enricheR-Bioconductor package (version 2.1).  

PPI Network construction  

The search tool for the retrieval of interacting 

genes (STRING, https://string-db.org/cgi/input.pl; 

version: 11.0), was used for obtaining direct 

(physical) and indirect (functional) human PPI 

networks (PPIN). The attribute that we applied to 

construct network was based on the highest 

confidence score of 0.07. Then, the constructed PPI 

network was analyzed using Cytoscape (version 

3.7.0). The topological analysis of the PPI network 

was performed with the Network Analyzer. 

Betweenness centrality (BC), closeness centrality 

(CC), and degree (K) were considered as 

fundamental parameters during our experiments to 

determine node properties.  

 

Identification of modules and functional 

annotation analysis 

The Molecular complex detection (MCODE) 

plugin was applied to visualize the significant gene 

modules in EOC with default parameters and the 

maximum depth of 100. Selection criteria for top 3 

significant modules were set as follows: MCODE 

scores ≥ 6, and number of nodes ≥ 10. Functional 

enrichment analysis for each module was performed 

using g:Profiler (URL: http://biit.cs.ut.ee/gprofiler/).  

 

Results  

 
Differential gene expression analysis results  

 Distribution of expression values across 

samples before and after normalization was 

evaluated to ensure that expression values were 

similar across normalized counts.  

Complete plot of raw counts using log2 

transformation (log2 (Non-normalized counts+1)) 

and then a plot of normalized counts using the 

DESeq2 are shown in Figure 1 (A) and (B), 

respectively. 

 
 

http://www.ncbi.nlm.nih.gov/geo
http://biit.cs.ut.ee/gprofiler/
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Figure 1. The gene count distributions. Box plots of non-normalized counts (log2 (counts+1)) per sample (A), and 

normalized counts (log2 (normalized counts)) per sample (B) are shown. The x-axis represents samples and the Y-axis 

represents log2 (counts +1). 

 

 

After DE analysis between ovarian tumor and 

normal groups, 1000 DEGs (padj <0.01) were 

obtained with 232 upregulated genes (padj <0.01, 

log2 FC> 2), and 324 downregulated genes (padj 

<0.01, log2 FC <-2) (Table S1).  

 

Functional analysis of DEGs 

Gene ontology (GO) and pathway analysis of 

differentially expressed genes 

To investigate activated and suppressed DEGs in 

different functional categories, GO and KEGG 

pathway analysis using enrichR were performed. 

Based on the results from these experiments genes 

were classified into different functional categories 

according to the GO term for biological processes 

(BP) (Figure. S1), molecular functions (MF) (Figure. 

S2) and cellular components (CC) (Figure. S3). 

Totally 572 out of 1000 profiled DEGs assigned to 

930 GO terms (padj <0.01). The top 1 significantly 

upregulated and downregulated GO categories are 

shown in Table. 1. 

 

Overall, 156 upregulated genes (padj<0.01, log2 FC 

>2), and 82 downregulated genes (padj<0.01, log2 

FC <-2) were mapped to 283 KEGG pathways. The 

top 14 enriched pathways are shown in Figure. 2. 

The upregulated genes were highly clustered in 

signaling pathways including glycolysis, pyruvate 

metabolism, tryptophan metabolism, and fatty acid 

degradation; while, the most downregulated genes 

were highly clustered into ribosome, salmonella 

infection, focal adhesion, and apoptosis. 

 

PPI Network construction 

After DEGA, the significant result of String analyses 

was based on confidence score (0.007), the average 

degree of nodes (5.11), and average local clustering 

coefficient (0.406), and a PPI network with 797 

interactions between 600 DEGs was performed 

(Figure. 3). In order to detect the key parameters of 

the network, interaction pairs of the PPI network 

were visualized by Network-Analyzer Cytoscape 

plugin (cut off values: BC> 0.02, and K> 10((Table. 

2). 

 
Identification of modules and functional annotation 

analysis 

The module analysis of PPI network using 

MCODE resulted in 13 modules. According to the 

Table S2 and Figure 4, four significant modules were 

identified with MCODE (score ≥ 5 and nodes ≥ 6). 

Among which UBC (Ubiquitin C) as the main hub 

was clustered in module 3. Ribosomal Protein Small 

(RPS) subunit genes and Ribosomal Protein Large 

(RPL) genes were clustered in module 1, and other 

hub genes including Secreted Phosphoprotein 1 

(SPP1), calumenin (CALU), complement C3 (C3), 

and Fibronectin 1 (FN1) were clustered in module 2. 

 

 

 



Journal of Cell and Molecular Research (2020) 12 (1), 1-9 
  

4 

http://jcmr.um.ac.ir 

Table 1. The top 1 enriched gene ontology term of up- and down regulated genes involved in biological processes 

(BP), cellular components (CC), and molecular functions (MF) 
 

Gene Ontology (GO) terms and 

ID 
Source Adjusted p-value Gene symbol 

Up-regulated genes 

drug transport (GO:0015893) 
BP 0.0197973 SLC47A2; SLC19A1 

solute:sodium symporter 

activity (GO:0015370) 
MF 0.06705 SLC5A9; SLC25A22 

intrinsic component of the 

cytoplasmic side of the plasma 

membrane (GO:0031235) 

CC 0.0109396 MIEN1; SPTB 

Down-regulated genes 

SRP-dependent cotranslational 

protein targeting to membrane 

(GO:0006614) 

BP 1.78E-10 
RPL41;RPL3;RPL32;RPL13A;RPS25;RPS19;RPL36;

RPL14;RPL13;RPL37;RPL26;RPL29;RPS24;RPL19 

RNA binding (GO:0003723) 

MF 1.56E-13 

RBM25;RPL3;RPL32;HMGB2;PSIP1;YBX1;IFIT3;R

PS19;RPL36;HIST1H1D;KIF1C;RPL37;HMGN2;HIS

T1H1B;HIST1H1C;CAST;DDX58;ACTN1;DNTTIP2
;RPL13A;PPHLN1;GNL2;GTF2F1;SMC1A;RANGA

P1;EEF1D;MYH9;LUC7L3;RPL26;SREK1;RPL29;E

ZR;PLEC;DHX8;SRRT;DDX21;PDCD11;TERT;PES
1;UBC;RPL14;RPL13;FLNA;FLNB;SRSF11;RPL19;

RBM39;PRPF38B;RPL41;JUN;KRR1;PRRC2C;DEK;

EEF2;RPS25;H1F0;MYBBP1A;ACO1;VIM;CALR;R
PS24;WRAP53 

cytosolic large ribosomal 

subunit (GO:0022625) 
    CC 5.33E-10 

RPL41;RPL3;RPL32;RPL36;RPL14;RPL13A;RPL13;
RPL37;RPL26;RPL29;RPL19 

 

 

 
Figure 2. Pathway enrichment analysis of up- and downregulated genes in ovarian cancer samples in comparison to 

normal cases. The x-axis represents pathways, and KEGG IDs and the Y-axis represents combined score. As shown, 

the most downregulated genes are enriched in the ribosome pathway and the most upregulated genes are enriched in 

the Glycolysis/Gluconeogenesis pathway. 
 

 

 



Journal of Cell and Molecular Research (2020) 12 (1), 1-9

5 

http://jcmr.um.ac.ir 

Figure 3. Overview of the PPI network constructed using Cytoscape. The network includes 547 edges (interactions) 

among 63 nodes. The nodes with dark brown, light brown, and green colors represent key genes in the network. Among 

key genes, nodes with dark brown color represent the super hubs with the highest BC and K. 

Table 2. The main topological parameters including, Betweenness centrality (BC), closeness centrality (CC), and 

Degree (K) of the PPI network. The hub genes in the network based on cut off values of BC > 0.02 and degree >10 

were demonstrated with light gray. 

Gene K BC CC 

UBC 27 0.39930027 0.40957447 

FN1 23 0.22956964 0.35240275 

ACTB 17 0.21966548 0.39896373 

GAPDH 13 0.19844427 0.40633245 

JUN 12 0.12427487 0.36842105 

RPL13A 23 0.1023342 0.38118812 

CXCL8 11 0.09960491 0.34684685 

RPL19 21 0.05464691 0.36150235 

RPL32 20 0.04926171 0.35981308 

C3 13 0.02902674 0.28308824 

PLEC 16 0.02815066 0.30985915 

PES1 17 0.02631353 0.29222011 
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Figure 4. Subnetworks identified from the PPI network (Module 1, Module 2, Module 3, and Module 4, respectively). 

The light green nodes in each of the clusters represent hub genes which were extracted from the PPI network by 

Network-Analyzer plugin. The white nodes represent genes which are involved in modules. The lines represent node’s 

interactions. 

Functional annotation analysis was applied to the 

hub genes of the PPI Network and each module 

separately. The top three functional annotation 

categories (BB, MF, CC, and KEGG) for module 1 

are shown in Table. 3. Pathway analysis mainly 

involved KEGG pathway revealed that genes were 

commonly enriched in the ribosome pathway. The 

constituent structures of the ribosome, nuclear-

transcribed mRNA catabolic process, nonsense-

mediated mRNA decay, and cytosolic ribosome 

were the most related terms to MF, BP, and CC of 

the module 1 with the most enriched gene, 

respectively. 

Table 3. The top three functional annotation categories (BB, MF, CC, and KEGG) for module 1 with the most enriched 

gene. 

Sour

ce 

 GO 

/Pathway 

ID 

Term 

name 

Adjust

ed p-

value 

Intersections 

MF GO:00037

35 

structural 

constituent 

of 

ribosome 

4.98E-

19 

RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,RPL13A,RPL29,RPL1

3 

MF GO:00051

98 

RNA 

binding 

4.26E-

13 

RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,PLEC,RPL13A,RPL2

9,RPL13 

MF GO:00037

23 

structural 

molecule 

activity 

7.63E-

13 

RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,RPS25,PLEC,RPL13
A,RPL29,UPF2,RPL13,EEF2 

BP GO:00001

84 

nuclear-

transcribed 

mRNA 

catabolic 

process, 

nonsense-

mediated 

mRNA 

decay 

2.49E-

25 

RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,RPS25,RPL13A,RPL2
9,UPF2,RPL13 
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BP GO:00066

14 

SRP-

dependent 

cotranslati

onal 

protein 

targeting 

to the 

membrane 

5.23E-

24 

RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,RPS25,RPL13A,RPL2

9,RPL13 

BP GO:00066

13 

cotranslati

onal 

protein 

targeting 

to the 

membrane 

1.06E-

23 

RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,RPS25,RPL13A,RPL2

9,RPL13 

CC GO:00226

26 

cytosolic 

ribosome 

3.23E-

15 

NACA,RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,RPS25,RPL13
A,RPL29,RPL13,EEF2 

CC GO:00058

40 

Ribosome 9.54E-

14 

RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,RPS25,RPL13A,RPL2

9,RPL13 

CC GO:00443

91 

ribosomal 

subunit 

7.20E-

13 

RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,RPS25,RPL13A,RPL2

9,RPL13,EEF2 

KEG

G 

KEGG:03

010 

Ribosome 2.85E-

19 

RPL32,RPS24,RPL26,RPL36,RPS19,RPL3,RPL14,RPL37,RPL19,RPS25,RPL13A,RPL2
9,RPL13 

 

 

 

Discussion 

 
Epithelial ovarian cancer (EOC) has the highest 

mortality rate among different types of women's 

cancers due to the poor diagnosis (Hao et al., 2010). 

Studies have shown that in order to achieve effective 

methods for early diagnosis and prevention of 

metastasis, it is important to study the molecular 

mechanisms of the carcinogenesis. 

The purpose of the current study is the analysis of 

existing RNA-seq data and their comparative 

interpretation between normal and diseased 

conditions to investigate novel DEGs involved in 

PPI Networks and regulatory pathways of EOC. 

Many pivotal genes and pathways which are 

associated with ovarian cancer were identified in the 

present study. Totally, among 1000 DEGs (232 

upregulated and 324 downregulated genes), 

migration and invasion enhancer 1 (MIEN1) and 

AP001610.5 were the most up- and down-regulated 

genes, respectively. MIEN1 is an intrinsic 

component of the cytoplasmic side of the plasma 

membrane, which plays a pivotal role in the 

regulation of apoptosis. It was previously proposed 

by other studies as an important target to be 

considered in molecular cancer therapy procedures 

(Evans et al., 2006). The Ribosome pathway and 

Glycolysis/Gluconeogenesis were also identified as 

the most significantly enriched pathways in KEGG 

analysis. ALDH3A2 (Marcato et al, 2011), a 

member of the aldehyde dehydrogenase (ALDH) 

gene family (Warburg, 1956), is the most significant 

gene in Glycolysis/Gluconeogenesis pathway. 

Whereas, high glycolysis in tumor cells correlates 

with the degree of tumor malignancy, an argument 

to justify the significance of the glycolysis pathway 

in this study is the potential need of chronic cell 

proliferation to provide energy in order to fuel rapid 

cell growth and division (Board et al., 1992). In the 

present study, ribosomal protein (Rps) genes and 

large ribosomal proteins (RPL) including RPL41, 

RPL3, RPL32, RPL13A, RPS25, RPS19, RPL14 

and RPL36 were the most significant downregulated 

DEGs. These genes related to the signal-recognition 

particle (SRP)-dependent cotranslational protein-

membrane targeting, RNA binding, and cytosolic 

large ribosomal subunit.  

After analyzing the topology of the PPI network 

totally 28 nodes with BC> 0.02, and K> 10 were 

extracted as hub genes and among them some nodes 

such as UBC, FN1, ACTB, GAPDH, JUN, and 

RPL13A with high K, BC, and CC were shortlisted. 

These hub genes were downregulated in EOC 

samples in comparison to adjacent normal samples. 

Clustering was performed to investigate the 

relationship between hub genes with other genes of 

the network using MCODE and previously 

identified 13 modules. Furthermore, functional 

annotation was performed on 4 modules to 

determine the top affected functions in EOC. 

Functional annotation of main hubs clustered in 

these modules showed that Ubiquitin C (UBC), with 

the highest degree of connectivity, was clustered in 

module 3 along with other genes, including IFI44L, 

IFI27, DDX58, IFIT3, PARP9, MX1, and ISG15. 

This module mainly enriched with protein tag, 

defense response, and RIG-I-like receptor signaling 

pathways.  

The ubiquitin is encoded by the ubiquitin C (UBC) 

and ubiquitin B (UBB) in humans. These two genes 

are essential for maintenance of cellular ubiquitin 
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levels under stress conditions (Castello et al., 2017). 

Moreover, they play key roles as tumor suppressors 

in a variety of cancers, DNA damage repair and 

regulation of protein turnover through the ubiquitin-

proteasome system (UPS) (Kimura et al., 2016). 

Recent studies indicated that the transcriptional 

repression of UBB is a cancer-subtype-specific 

event which occurs in approximately 30% of high-

grade serous ovarian cancer (HGSOC) cases. 

Silencing of UBB reduces cellular ubiquitin levels 

which is resulted in the overexpression of UBC to 

compensate the lost function of UBB. These changes 

may have prognostic value (Dasgupta et al., 2009).  

Fibronectin 1 (FN1) was clustered with the Secreted 

Phosphoprotein 1 (SPP1), Transmembrane Protein 

132A (TMEM132A), Stanniocalcin 2 (STC2), 

cysteine-rich angiogenic inducer 61 (CYR61), 

Wolfram syndrome type 1 (WFS1), Insulin-like 

Growth Factor Binding Protein 4 (IGFBP4), and 

Enamelin (ENAM) in the module 2 which is 

enriched with extracellular matrix structural 

constituent. The FN1 has numerous functional 

properties and is involved in cell adhesion, growth, 

migration, and differentiation procedures. Previous 

studies reported morphological alterations in tumors 

and tumor-derived cell lines that have been 

attributed to the decrease fibronectin expression, 

increased fibronectin degradation, and/or decreased 

expression of fibronectin-binding receptors, such as 

α5β1 integrin (Zhuo et al., 2016). The main 

functions of module 1 were correlated with RPs and 

RPL genes and structural constituent of ribosomes 

and nuclear-transcribed mRNA catabolic process.  

Secreted phosphoprotein 1 (SPP1), also known as 

Osteopontin (OPN), as an upregulated gene in the 

present study, was found to be overexpressed in 

numerous tumors, including lung, colon, breast, and 

ovarian cancers (Wang et al., 2014; Zeng et al., 

2018). Many recent studies demonstrated that the 

existence of SPP1 in cancerous tissue samples and 

sera of women with ovarian cancer promotes ovarian 

cancer progression via Integrin β1/FAK/AKT 

signaling pathway (Shevde et al., 2014). The SPP1 

along with TMEM132A, CALU, C3, STC2, 

CYR61, WFS1, IGFBP4, FN1, and ENAM were 

correlated with the most upregulated gene-enriched 

signaling pathways including post-translational 

protein modifications, signaling receptor bindings, 

and ECM-receptor interactions in the module 1. To 

data, among all mentioned pathways, the ECM-

receptor interactions pathway has been highlighted 

in cancer studies and also the interaction of this 

pathway with DEGs has been introduced as a 

diagnostic marker (Bao et al., 2019). The main 

cancer-related activity of this pathway is related to 

adhesion, migration, differentiation, proliferation, 

and apoptosis. Therefore, Increasing the expression 

of SPP1 as an inflammatory, fibrotic, and 

carcinogenic gene has been well justified in the 

ECM-receptor interactions pathway.  
 

Conclusion 

 
The current study demonstrates that, the hub 

genes derived from the PPI network, including UBC, 

FN1, ACTB, SPP1, JUN, and RPL13A tend to be 

present in different cancer-related pathways and Go 

functions. After following the function of these 

genes in causing cancer we suggested that these 

genes may be have potential to become biomarker 

panel related to the EOC. Yet, more molecular 

biology experiments, computational method 

analysis on big data is needed to support this 

suggestion. 
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Supplementary Figures 

 

 

 

Figure S1. Comparative gene ontology enrichment analysis of biological processes (BP) for up- and down-regulated 

genes of normal and cancerous ovarian samples. As shown, the most down-regulated genes are enriched in the (SRP)-

dependent cotranslational protein-membrane targeting and the most up- regulated genes are enriched in the amino 

metabolic process. 

 

 

Figure S2. Comparative gene ontology enrichment analysis of molecular functions (MF) for up- and down-regulated 

genes of normal and cancerous ovarian samples. As shown, the most downregulated genes are enriched in the AT DNA 

binding and the most upregulated genes are enriched in the Solute: proton antiporter activity. 
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Figure S3. Comparative gene ontology enrichment analysis of cellular components (CC) for up- and down- regulated 

genes of normal and cancerous ovarian samples. As shown, the most downregulated genes are enriched in cytosolic 

large ribosomal subunit and the most upregulated genes are enriched in the intrinsic component of the cytoplasmic side 

of the plasma membrane. 

Supplementary Table 

Table S1. The list of upregulated and downregulated genes (DEGs). This table is supplied as an excel file. 
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