##plugins.themes.bootstrap3.article.main##

Maryam Yazdani Ali Bidmeshkipour Sajjad Sisakhtnezhad

Abstract

The immunomodulation ability of mesenchymal stem cells (MSCs) has attracted interest as a unique property that makes them interesting tools for the treatment of inflammatory and autoimmune diseases. Eugenol is a volatile compound from the phenylpropanoids class of chemical compounds. Despite extensive investigations on the biological and pharmacological properties of Eugenol, its effect on the MSCs characteristics remains to be clarified. Therefore, this study was designed to evaluate the effect of Eugenol on the expression of genes (Tlr3, Tlr4, Ccl2, and Ccl3) involved in immunomodulation potency of MSCs by quantitative real-time PCR (qRT-PCR). To do so, MSCs were isolated from 4-8 weeks old mouse bone marrow (BM). The effect of Eugenol on the viability of BM-MSCs was evaluated by MTT assay at 24, 48, and 72h after treatment. The results showed that Eugenol reduced the number of BM-MSCs in a dose- and time-dependent manner. In addition, the half maximum inhibitory concentration of Eugenol on MSCs was 400μg/ml at 24 and 48h and 200μg/ml at 72h after treatment. Moreover, about 90% of MSCs were alive at the concentration of 12.5μg/ml 24h after treatment. The qRT-PCR results indicated that Tlr3, Tlr4, Ccl2, and Ccl3 genes up-regulated 1.6-, 1.8-, 1.3-, 2.2-fold, respectively, in Eugenol-treated BM-MSCs compared to untreated controls. In conclusion, we declare that Eugenol may somewhat regulate the immunomodulation potency of MSCs and this study provides a background for further studies on the effect of Eugenol on MSCs characteristics and functions, which may finally improve their potency for cell-based therapy applications.

Article Details

References
Abdi R., Fiorina P., Adra C. N., Atkinson M. and Sayegh M. H. (2008) Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57: 1759-1767.

Bachiega T. F., de Sousa J. P., Bastos J. K. and Sforcin J. M. (2012) Clove and eugenol in noncytotoxic concentrations exert immunomodulatory/anti-inflammatory action on cytokine production by murine macrophages. The Journal of Pharmacy and Pharmacology 64: 610-616.

Delarosa O., Dalemans W. and Lombardo E. (2012) Toll-like receptors as modulators of mesenchymal stem cells. Frontiers in Immunology. 3: 182.

Hass R., Kasper C., Böhm S. and Jacobs R. (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling 9: 1.

Huang C. E., Hu F. W., Yu C. H., Tsai L. L., Lee T. H., Chou M. Y. and Yu C. C. (2014) Concurrent expression of Oct4 and Nanog maintains mesenchymal stem-like property of human dental pulp cells. International Journal of Molecular Sciences 15: 18623-18639.

Hwang S. H., Cho H. K., Park S. H., Lee W., Lee H. J., Lee D. C., Oh J. H., Kim T. G., Sohn H. J., Kang J. M. and Kim S. W. (2014) Toll like receptor 3 & 4 responses of human turbinate derived mesenchymal stem cells: stimulation by double stranded RNA and lipopolysaccharide. PloS one. 9, e101558.

Ito M., Murakami K. and Yoshino M. (2005) Antioxidant action of eugenol compounds: role of metal ion in the inhibition of lipid peroxidation. Food and Chemical Toxicology 43: 461-466.

Kabuto H. and Yamanushi T. T. (2011) Effects of zingerone [4-(4-hydroxy-3-methoxyphenyl)-2-butanone] and eugenol [2-methoxy-4-(2-propenyl)phenol] on the pathological progress in the 6-hydroxydopamine-induced Parkinson's disease mouse model. Neurochemical Research 36: 2244-2249.

Kamatou G. P., Vermaak I. and Viljoen A. M. (2012) Eugenol--from the remote Maluku Islands to the international market place: a review of a remarkable and versatile molecule. Molecules 17: 6953-6981.

Le Blanc K. and Davies L. C. (2015) Mesenchymal stromal cells and the innate immune response. Immunology Letters 168: 140-146.

Lee H. K., Kim H. S., Kim J. S., Kim Y. G., Park K. H., Lee J. H., Kim K. H., Chang I. Y., Bae S. C., Kim Y., Hong J. T., Kehrl J. H. and Han S. B. (2017) CCL2 deficient mesenchymal stem cells fail to establish long-lasting contact with T cells and no longer ameliorate lupus symptoms. Scientific Reports 7: 41258.

Livak K. J. and Schmittgen T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.

Ma S., Xie N., Li W., Yuan B., Shi Y. and Wang Y. (2014) Immunobiology of mesenchymal stem cells. Cell Death and Differentiation 21: 216-225.

Mastri M., Shah Z., McLaughlin T., Greene C. J., Baum L., Suzuki G. and Lee T. (2012) Activation of Toll-like receptor 3 amplifies mesenchymal stem cell trophic factors and enhances therapeutic potency. American Journal of Physiology. Cell Physiology 303: C1021-1033.

Najar M., Krayem M., Meuleman N., Bron D. and Lagneaux L. (2017) Mesenchymal Stromal Cells and Toll-Like Receptor Priming: A Critical Review. Immune Network 17: 89-102.

O'Neill L. A., Golenbock D. and Bowie A. G. (2013) The history of Toll-like receptors - redefining innate immunity. Nature Reviews. Immunology 13: 453-460.

Pyo M., Lee H. K., Uhm J., Ryu H. S., Hong J. T., Kim Y. and Han S. B. (2015) Time-lapse imaging of contact dynamics between mesenchymal stem cells and T cells (THER5P. 913)ed^eds): Am Assoc Immnol.

Raghavenra H., Diwakr B. T., Lokesh B. R. and Naidu K. A. (2006) Eugenol--the active principle from cloves inhibits 5-lipoxygenase activity and leukotriene-C4 in human PMNL cells. Prostaglandins, Leukotrienes, and Essential Fatty Acids 74: 23-27.

Rashedi I., Gomez-Aristizabal A., Wang X. H., Viswanathan S. and Keating A. (2017) TLR3 or TLR4 Activation Enhances Mesenchymal Stromal Cell-Mediated Treg Induction via Notch Signaling. Stem Cells 35: 265-275.

Ren G., Zhang L., Zhao X., Xu G., Zhang Y., Roberts A. I., Zhao R. C. nad Shi Y. (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2: 141-150.

Ren G., Zhao X., Zhang L., Zhang J., L'Huillier A., Ling W., Roberts A. I., Le A. D., Shi S., Shao C. and Shi Y. (2010) Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. Journal of Immunology 184: 2321-2328.

Renner P., Eggenhofer E., Rosenauer A., Popp F. C., Steinmann J. F., Slowik P., Geissler E. K., Piso P., Schlitt H. J. and Dahlke M. H. (2009) Mesenchymal stem cells require a sufficient, ongoing immune response to exert their immunosuppressive function. Transplantation Proceedings 41: 2607-2611.

Savickiene J., Treigyte G., Baronaite S., Valiuliene G., Kaupinis A., Valius M., Arlauskiene A. and Navakauskiene R. (2015) Human amniotic fluid mesenchymal stem cells from second-and third-trimester amniocentesis: Differentiation potential, molecular signature, and proteome analysis. Stem Cells Intternational 2015.

Singh G., Maurya S., DeLampasona M. P. and Catalan C. A. (2007) A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food and Chemical Toxicology 45: 1650-1661.

Sisakhtnezhad S., Alimoradi E. and Akrami H. (2017) External factors influencing mesenchymal stem cell fate in vitro. European Journal of Cell Biology 96: 13-33.

Tomchuck S. L., Zwezdaryk K. J., Coffelt S. B., Waterman R. S., Danka E. S. and Scandurro A. B. (2008) Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 26: 99-107.

Wang J., Zhao Y., Wu X., Yin S., Chuai Y. and Wang A. (2015) The utility of human fallopian tube mucosa as a novel source of multipotent stem cells for the treatment of autologous reproductive tract injury. Stem Cell Research & Therapy 6: 98.

Waterman R. S., Tomchuck S. L., Henkle S. L. and Betancourt A. M. (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PloS One 5: e10088.

Zhang L., Liu D., Pu D., Wang Y., Li L., He Y., Li Y., Qiu Z., Zhao S. and Li W. (2015) The role of Toll-like receptor 3 and 4 in regulating the function of mesenchymal stem cells isolated from umbilical cord. International Journal of Molecular Medicine 35: 1003-1010.

Zhao Q., Ren H. and Han Z. (2016). Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. Journal of Cellular Immunotherapy 2: 3-20.

Zhao X., Liu D., Gong W., Zhao G., Liu L., Yang L. and Hou Y. (2014) The toll-like receptor 3 ligand, poly(I:C), improves immunosuppressive function and therapeutic effect of mesenchymal stem cells on sepsis via inhibiting MiR-143. Stem Cells 32: 521-533.
How to Cite
یزدانیم., بیدمشکی پورع., & سی سخت نژادس. (2018). Evaluating the Effect of Eugenol on the Expression of Genes Involved in the Immunomodulatoty Potency of Mouse Mesenchymal Stem Cells In Vitro. Journal of Cell and Molecular Research, 10(1), 1-10. https://doi.org/10.22067/jcmr.v10i1.70380
Section
Research Articles